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Abstract. We derive the thermodynamics of self-similar paths (or bridges) joining the two
pointsA := (0, 0) andB := (1, 1) of the plane. These paths may be constituted with both
macroscopic and microscopic fragments, each deserving its specific statistics, while remaining
continuous. Such discontinuous paths are also studied with some information related to the
statistics of their jumps.

If the bridges under study are bound to be non-decreasing(A,B)-paths, this study coincides
with the one of multifractal measures on the unit interval. Relaxing this condition leads to an
extension of the multifractal formalism whose main lines are derived here.

1. Introduction

Multifractal measures on the unit interval and their associated spectra have been designed
by physicists [1–3] in order to understand problems arising in the natural sciences: in
fully developed turbulence, they allow the investigation of the intermittent behaviour in the
high-vorticity domain; in diffusion limited aggregation, they are designed to compute the
probability that a random walker hits the neighbourhood of a particular site of an aggregate
[4, 5]. They are also studied in dynamical system theory to measure how often a given
region of the attractor is visited.

In terms of the equivalent distribution function of such measures, their graph is bound
to be a non-decreasing(A,B)-path, joining the two pointsA := (0, 0) andB := (1, 1) of
the plane.

We first derive, in sections 2–4, the thermodynamics of such self-similar paths (or
bridges) joining the two pointsA andB of the plane. These paths may be constituted of
both microscopic (singular) and macroscopic (regular) fragments, each deserving its specific
statistics, while first remaining continuous: in the first ‘diluted’ regime, the partition function
of the fragments is renormalizable, while it converges in the second ‘condensed’ regime; a
phase transition separates these regimes. In the condensed regime, we propose a description
of the regular part of these objects, based on Gibbs’ statistics. Such discontinuous paths are
also studied with information related to the statistics of their jumps.

Relaxing the condition that the path should be non-decreasing leads to an extension of
the multifractal formalism for measures, the main lines of which are derived in section 5. In
this extension,(A,B)-paths are the outcome of a deterministic conservative multiplicative
cascade whose reduction factors are allowed to be negative. As a result, the partition function
encloses information on both their moduli and sign. Circumventing these difficulties, the
(A,B)-paths that are designed here are truly multifractals.

† E-mail address: huillet@limhp.univ-paris13.fr
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2. Multifractal formalism

Let us first recall some well known facts from multifractal theory. Letµ be a Borel
probability measure supported by the interval [0, 1]. The measureµ is said to be
discontinuous (or atomic) if it contains atoms, in which case there exists at least one
singletonx0 ∈ [0, 1] for which µ({x0}) > 0. If it is not discontinuous, it is said to be
continuous (or diffuse). If it is continuous, it can be absolutely continuous if the density
limε→0+(1/ε)µ(Bε(x)) := p(x) > 0 exists forx ∈ (0, 1) and Bε(x) := [x − ε, x + ε];
otherwise it is singular continuous. Moreover, it may have gaps, in which case there is at
least one open sub-intervalI ⊂ [0, 1], for whichµ(I) = 0. Mixtures of all these situations
may arise, since each such measure can be (uniquely) decomposed into a purely atomic, a
continuous but singular, and an absolutely continuous part.

In any case, it is first assumed that the distribution functionx ∈ [0, 1] → F(x) :=
µ([0, x]) ∈ [0, 1] is a right-continuous, non-decreasing function, and thatµ([0, 1]) = 1.

For anyx ∈ [0, 1], now let

α(x) := lim
ε→0+

logε µ(Bε(x)) (2.1)

be the local Ḧolder exponent ofµ at x. If µ has gaps, we shall adopt the convention
α(x1) = +∞, for any x1 within an open intervalI , such thatµ(I) = 0. In contrast,
α(x0) = 0 if µ is atomic atx0. Let K(α) := {x : α(x) = α}, for α > 0, andfH(α) ∈ [0, 1]
be the Hausdorff dimension of the setK(α). The functionfH(α) is called the Hausdorff
spectrum ofµ. It is said thatµ is a multifractal measure if the support of the functionf :=
{α > 0 : f (α) 6= 0} contains a continuum ofα.

Thus a multifractal is a measure. It is finely characterized by the functionfH which
gives the Hausdorff dimension of the fractal setsK(α), asα > 0 varies. This function is,
in general, inaccessible in most cases, except for self-similar measures which we shall limit
ourselves to in the following. In this case, the Legendre spectrum also plays a central role.

3. The purely singular case

We first recall the construction of a purely singular measure, without gaps [6].
A continuous self-similar measure can classically be constructed in the following way,

taking advantage of the notion of a multiplicative cascade. Take initially a unit mass
uniformly spread over the interval [0, 1]. At resolutionn = 1, split the unit interval into
m sub-intervals each in the similarity ratiorl, l = 1, . . . , m, with rl ∈ (0, 1), l = 1, . . . , m,
such that

∑m
l=1 rl = 1. Attribute the massπl, l = 1, . . . , m, uniformly to all such sub-

intervals. Hereπl ∈ (0, 1), l = 1, . . . , m, satisfying
∑m

l=1πl = 1 which expresses the
mass conservation. At resolutionn = 2, split each sub-intervall = 1, . . . , m into sub-sub-
intervals, each in the similarity ratiorl′ , l′ = 1, . . . , m, to the chosen sub-interval of length
rl , and attribute the massπlπl′ , l′ = 1, . . . , m, uniformly to each such sub-sub-interval.
Iterate indefinitely.

In terms of the distribution function, this algorithm starts with the straight line
F0(x) = x, which connects the points(0, 0) and (1, 1). At resolutionn = 1, F1(x) is
an increasing broken line withm pieces. During iteration, the graph ofFn becomes more
and more tortuous, while remaining a continuous and strictly increasing path (or bridge)
from A := (0, 0) to B := (1, 1).

The limit resultF := limn→∞ Fn is the distribution function of a continuous purely
singular measureµ spread over the unit interval.
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In this sense, the following formalism is the thermodynamics of these particular
(A,B)-paths (or bridges).

For (q, q∗) ∈ R2, define the level-n partition function

Zn(q, q
∗) :=

Nn∑
i=1

πi(n)
qri(n)

q∗ Zn(0, 0) = Nn (3.1)

where(πi(n), ri(n))i=1,...,Nn is the vector of masses and similarity ratios attached to each of
theNn := mn available chunks at resolutionn.

Clearly,Zn(q, q∗) is defined recursively by

Zn+1(q, q
∗) = Zn(q, q∗)z(q, q∗) Z0(q, q

∗) = 1 (3.2)

with

z(q, q∗) :=
m∑
l=1

π
q

l r
q∗
l .

Next defineF(q, q∗) := − logm z(q, q
∗). This function is concave and analytic in the plane,

satisfyingF(0, 0) = −1 andF(0, 1) = F(1, 0) = 0.
It follows from (3.1) and (3.2) that for anyn > 1

− logNn Zn(q, q
∗) = F(q, q∗). (3.3)

Define now, as in [1], the functionτ(q) implicitly by
m∑
l=1

π
q

l r
−τ(q)
l = 1. (3.4)

Alternatively,F(q,−τ(q)) = 0. Observe thatZn(q, q∗)→∞ if q∗ < −τ(q) and tends to
zero otherwise.

The function τ(q) is concave and analytic on the line, satisfyingτ(0) = −1 and
τ(1) = 0. Its Legendre transform

f (α) := inf
q∈R
(αq − τ(q)) = αf ′(α)− τ(f ′(α)) (3.5)

is defined on the Ḧolder rangeα∈ [αmin, αmax], with αmin := minl=1,...,m(− logπl/ logrl) > 0
and αmax := maxl=1,...,m(− logπl/ − logrl) > 0. This function is called the Legendre
spectrum of the measureµ: it is non-negative, concave and analytic on this interval, with the
propertiesf (αmin) = f (αmax) = 0 andf ′(αmin) = f ′(αmax) = +∞. It attains its maximum
at α0 := (1/m)

∑m
l=1(logπl/ logrl) = τ ′(0), andf (α0) = 1. The pointα1 := τ ′(1), for

which α1 = f (α1) is called the information dimension ofµ.
In this context, the functionf (α) is of some importance, since it coincides with

the Hausdorff spectrum of the self-similar measureµ just mentioned. In other words,
f (α) = fH(α).

More precisely, define the set

B(α, γ ∗) :=
{
i ∈ [Nn] :

− logNn πi(n)

− logNn ri(n)
→ α,− logNn ri(n)→ γ ∗

}
(3.6)

andNn(α, γ ∗) := #B(α, γ ∗) its cardinal. This is the number of atoms whose coarse Hölder
exponent isα and whose similarity ratio grows likeN−γ

∗
n (γ ∗ > 0). We first learn from

large deviation theory [7, 8] that

lim
n→∞ logNn Nn(α, γ

∗) = fα(γ ∗) (3.7)
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wherefα(γ ∗) := f (αγ ∗, γ ∗) and

f (γ, γ ∗) := inf
(q,q∗)∈R2

(γ q + γ ∗q∗ − F(q, q∗)).

The functionfα(γ ∗) possesses the following properties [8]. For anyα ∈ [αmin, αmax],
it is positive concave as a function ofγ ∗. It takes the maximal valueσ(α) := fα(0). The
line passing through the origin which is tangent to theγ ∗-graph offα(γ ∗) has slopef (α)
and hits this graph atγ ∗ := γ ∗(α). Hence,f (α) = fα(γ ∗(α))/γ ∗(α).

Now, for any α ∈ [αmin, αmax] held fixed, the contribution to the partition function
Zn(q, q

∗) by those chunks with this Ḧolder exponentand whose similarity ratio isN−γ
∗

n at
resolutionn is from (3.6) and (3.7)

Zn(q, q
∗;α, γ ∗) ∼

n→∞N
fα(γ

∗)
n N−αγ

∗q
n N−γ

∗q∗
n = Nfα(γ

∗)−γ ∗(αq+q∗)
n

(the product of their number times their(mass)q(volume)q
∗
). This contribution will be

maximal for the unique optimal similarity ratioγ ∗op satisfyingf ′α(γ
∗
op) = (αq + q∗) and will

beZn(q, q∗;α, γ ∗op) ∼ N
fα(γ

∗
op)−γ ∗opf

′
α(γ
∗
op)

n .
If q∗ > −τ(q), fα(γ ∗op) − γ ∗opf

′
α(γ
∗
op) < 0: the maximal contribution ofB(α, γ ∗) to

Zn(q, q
∗) tends to zero, together withZn(q, q∗) itself.

If q∗ < −τ(q), fα(γ ∗op) − γ ∗opf
′
α(γ
∗
op) > 0: the maximal contribution ofB(α, γ ∗) to

Zn(q, q
∗) tends to infinity, together withZn(q, q∗) itself.

If q∗ = −τ(q), fα(γ ∗op) − γ ∗opf
′
α(γ
∗
op) < 0: the maximal contribution ofB(α, γ ∗) to

Zn(q, q
∗) also tends to zero, unlessq = f ′(α). Here,γ ∗op = γ ∗(α) and

fα(γ
∗
op)− γ ∗opf

′
α(γ
∗
op) = fα(γ ∗(α))− γ ∗(α)(αf ′(α)− τ(f ′(α)))

which is, from the above analysis,f (α)γ ∗(α) − γ ∗(α)f (α) = 0. In this case only, the
maximal contribution ofB(α, γ ∗) to Zn(q, q∗) is one: the setB(α, γ ∗(α)) carries all the
information Zn(q,−τ(q)) = 1. The atoms of theα-similarity ratio rn(α) := N

−γ ∗(α)
n

therefore carry all the information and we get from (3.7)

lim
n→∞ log1/rn(α) Nn(α, γ

∗(α)) = f (α) (3.8)

which is consistent with the definition of a Hausdorff dimension in our situation.

Remark 1.Observe now that another functionτ ∗(q∗) could be defined byF(−τ ∗(q∗), q∗) =
0, with the same properties asτ [9–11]. Clearly−τ ∗(−τ(q)) = q and−τ(−τ ∗(q∗)) =
q∗. These functions are the inverses of one another. As a result, lettingf ∗(α∗) :=
infq∗∈R(α∗q∗ − τ ∗(q∗)) be the Legendre transform ofτ ∗, it is well known thatf ∗(α∗) =
α∗f (1/α∗) and conversely thatf (α) = αf ∗(1/α). The functionf ∗(α∗) is the Legendre
spectrum of the measureµ∗ obtained while reversing the roles played by(πl, rl)l=1,...,m in
the above construction ofµ. The measuresµ andµ∗ are said to be reciprocal.

Remark 2. Various extensions and ‘anomalies’ of this basic model have been proposed
recently in the literature about multifractals:
• the infinite base case:m = ∞, leading to the notion of a left-hand sided Legendre

spectrum [4, 12, 13];
• a randomization procedure of(πl, rl)l=1,...,m → (5l, Rl)l=1,...,m, as identically

distributed but not independent variables on the interval [0, 1] (as a result of exact mass
and volume conservation

∑
l 5l = 1 and

∑
l Rl = 1), leading to the notion of random

multifractals, for which negative (‘latent’)f (α) are observed and interpreted [14–16];
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• a randomization procedure of(πl, rl)l=1,...,m, as identically distributed and independent
on the positive real line (in particular, log-normal) but satisfying the weaker average
constraint: E(

∑
l 5l) = E(

∑
l Rl) = 1, leading to the notion of random multifractals,

for which ‘virtual’ negativeα are observed [17];
• the ‘skewed’ multifractals extension when each fragment splits at various resolutions

[18, 19].

4. Mixture of an absolutely continuous measure with a singular continuous measure

First we now construct a continuous self-similar measure which presentssimultaneously
singular and absolutely continuous parts. Brownet al [20] have introduced a formalism
similar to the one which is discussed in this section. In order to avoid confusion with the
purely singular self-similar measures of the previous section, we shall call these measures
self-similar ‘with condensation’.

Take initially a unit mass uniformly spread over the interval [0, 1]. At resolutionn = 1,
split the unit interval intom sub-intervals as before.

Suppose there are nowtwo types of sub-intervals. First, the ‘sterile’ onesl = 1, . . . , d <
m − 1 each in the similarity ratiorl,−, l = 1, . . . , d, with rl,− ∈ (0, 1), l = 1, . . . , d
such that

∑d
l=1 rl,− := r− < 1. Attribute the massπl,− ∈ (0, 1), l = 1, . . . , d, with∑d

l=1πl,− := π− < 1, uniformly to each such sterile sub-interval. These sub-intervals are
sterile in the sense that they will no longer split in any subsequent step.

The second type of sub-intervals are ‘productive’, each in the similarity ratiorl,+ ∈
(0, 1), l = d + 1, . . . , m, with

∑m
l=d+1 rl,+ := r+ = 1− r−. There are thusb := m− d > 1

such sub-intervals. Attribute the massπl,+ ∈ (0, 1), l = d + 1, . . . , m, uniformly to each
such productive sub-interval. Suppose

∑m
l=d+1πl,+ := π+ = 1−π−. It is then assumed that

the mass and volume conservations hold, globally. At resolutionn = 2, split each productive
sub-intervall = d + 1, . . . , m leaving the sterile ones unaffected. Upon indefinite iteration,
we are also left with a singular measureµ spread over the unit interval. However, in the
limit, macroscopic masses remain supported by macroscopic volumes and co-exist with the
singular part of the distribution, each corresponding to a specific thermodynamical regime
(condensed and diluted, respectively). We now derive these two formalisms adapted to each
situation.

4.1. Singular part ofµ

For (q, q∗) ∈ R2, define as before the level-n partition function

Zn(q, q
∗) :=

Nn∑
i=1

πi(n)
qri(n)

q∗

where(πi(n), ri(n))i=1,...,Nn is the vector of masses and similarity ratios attached to each of
theNn available chunks at resolutionn.

Clearly,Zn(q, q∗) is now defined recursively by

Zn+1(q, q
∗) = z−(q, q∗)+ Zn(q, q∗)z+(q, q∗) Z0(q, q

∗) = 1 (4.1)

with

z−(q, q∗) :=
d∑
l=1

π
q

l,−r
q∗
l,− and z+(q, q∗) :=

m∑
l=d+1

π
q

l,+r
q∗
l,+.
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Observe from (4.1) thatZn(0, 0) := Nn satisfies

Nn+1 = d +Nnb N0 = 1.

Next define formally the generating functionZ(s, q, q∗) := ∑
n>0 b

snZn(q, q
∗). It

follows from (4.1) that

Z(s, q, q∗) = 1− bs(1− z−(q, q∗))
(1− bs)(1− bsz+(q, q∗)) (4.2)

provided s 6 F(q, q∗) := min(0, F+(q, q∗)), with F+(q, q∗) := − logb z+(q, q
∗), and is

undefined otherwise.
We shall letD := {(q, q∗) ∈ R2 : F+(q, q∗) < 0}, andDc be its complement inR2.
Now, the functionF+ is concave and analytic in the plane, satisfyingF+(0, 0) = −1,

F+(0, 1) = − logb r+ > 0 andF+(1, 0) = − logb π+ > 0.
The functionF also is concave but only continuous, and this is the signature of a

phase transitionbetween the diluted (when the scaling exponents(q, q∗) belong toD) and
condensed phases (when(q, q∗) ∈ Dc) [11, 18, 21].

It follows from (4.2) that

lim
n→∞− logNn Zn(q, q

∗) = F(q, q∗) (4.3)

generalizing (3.3).
Now define now the functionτ(q) implicitly by

F+(q,−τ(q)) = 0. (4.4)

To make the analogy of this definition of the ‘structure function’τ(q) with those
available in related papers more transparent, it is equivalently defined by

m∑
l=d+1

π
q

l,+r
−τ(q)
l,+ = 1.

This is the equation of the critical line separatingD andDc.
This functionτ : R→ R is concave and analytic, with 0> τ(0) > −1 andτ(q+) = 0,

whereq+ ∈ (0, 1) is the unique real number defined by
∑m

l=d+1π
q+
l,+ = 1. Observe that

τ(0) is uniquely determined by
∑m

l=d+1 r
−τ(0)
l,+ = 1 in a similar way.

The Legendre transformf (α) := infq∈R(αq − τ(q)) is defined on the Ḧolder range
α ∈ [αmin, αmax], with αmin := minl=d+1,...,m(− logπl,+/ − logrl,+) > 0 and αmax :=
maxl=d+1,...,m(− logπl,+/− logrl,+) > 0. This function is called the Legendre spectrum of
the singular part of measureµ. The functionf (α) is non-negative, concave and analytic
on this interval, withf (αmin) = f (αmax) = 0 andf ′(αmin) = f ′(αmax) = +∞. It attains
its maximum atα0 := (1/b)∑m

l=d+1(logπl,+/ logrl,+), andf (α0) = −τ(0) < 1, showing
that macroscopic masses remain supported by macroscopic volumes.

At the point α1 := τ ′(q+) < α0, f (α1) = q+τ ′(q+). This number is called the
information dimension of the singular part ofµ.

In this context, the functionf (α) coincides with the Hausdorff spectrum of the singular
part of the self-similar measureµ just constructed, which means thatf (α) = fH(α). (The
proof of this assertion can, for example, be found while readily adapting [10, theorem 16,
p 13], which itself is based on [22] concerning random multifractals; the main source of
the difficulty here is that

∑m
l=d+1πl,+ < 1, which may be circumvented, with additional

complexities to overcome, while performing the substitutionπl,+ → πl,+(q) := πql,+r−τ(q)l,+
for which now

∑m
l=d+1πl,+(q) = 1.)
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An interpretation of this function, which follows step by step that given at the end of
section 3, can easily be derived.

We now come to the thermodynamics, of the regular part ofµ.

4.2. Regular part ofµ

First note that really equation (4.3) is only meaningful for(q, q∗) ∈ D.
If (q, q∗) ∈ Dc, limn→∞− logNn Zn(q, q

∗) = 0 still holds but we have a more interesting
limit result,

lim
n→∞− logZn(q, q

∗) = − log( lim
s→0−

(1− bs)Z(s, q, q∗)) := F∞(q, q∗)
with F∞(q, q∗) := − log(z−(q, q∗)/(1 − z+(q, q∗))), from the initial-value theorem of
Laplace. Thus, concerning the regular (that is absolutely continuous) part of the measure
µ, we observe that the partition function converges inDc, which is the condensed phase
region.

Next defineτ∞(q) by

F∞(q,−τ∞(q)) = 0

hence
d∑
l=1

π
q

l,−r
−τ∞(q)
l,− +

m∑
l=d+1

π
q

l,+r
−τ∞(q)
l,+ = 1 (4.5)

is its defining equation (observe the analogy with (3.4)). The graph of−τ∞ is entirely
included withinDc; indeed,−τ∞(0) = 1 and−τ∞(1) = 0 so that two points of its graph
are at least withinDc. If now −τ∞ and−τ were to intersect, there should exist a point,
sayq0, for which−τ∞(q0) = −τ(q0). However, from the equation

∑m
l=d+1π

q

l,+r
−τ(q)
l,+ = 1

definingτ(q) and the one definingτ∞(q), such aq0 should satisfy
m∑

l=d+1

π
q0
l,+(r

−τ(q0)

l,+ − r−τ∞(q0)

l,+ ) = 0=
d∑
l=1

π
q0
l,−r
−τ∞(q0)

l,−

which is impossible, except maybe forτ∞(q0) = +∞ and hence atq0 = +∞. We shall
then call

f∞(α) := inf
q∈R
(αq − τ∞(q)) (4.6)

the Hölder spectrum of the regular part ofµ.
These facts deserve some explanation.

4.2.1. A Gibbs analysis of the regular part ofµ. Write the partition functionZ∞ as
Z∞(q, q∗) := ∑

i>1 e−qx1(i)−q∗x2(i), with x1(i) := − logµ(i) and x2(i) := − logr(i) the
logarithms of mass and similarity ratios of the observable macroscopic atoms constituting
the regular part ofµ (microscopic chunks contribute to nothing in this sum while the scaling
exponents(q, q∗) vary inDc).

Assume now that the exact distribution of(x1(i), x2(i))i>1 is unknown to some observer
so that these values are assumed to be the realization of some random vector(X1, X2). We
shall then search for a ‘probability’ measure of the event(X1 = x1(i), X2 = x2(i)), say
P (X1 = x1(i), X2 = x2(i)) := P (x1(i), x2(i)), which maximizes the Shannon entropy
[23, 24]:

S(P ) := −
∑
i>1

P (x1(i), x2(i)) logP (x1(i), x2(i)) (4.7)
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under the constraints∑
i>1

P (x1(i), x2(i)) = 1 (4.8)∑
i>1

x1(i)P (x1(i), x2(i)) = γ := 〈X1〉

and ∑
i>1

x2(i)P (x1(i), x2(i)) = γ ∗ := 〈X2〉

fixing the theoretical averages(γ, γ ∗) of (X1, X2) under the probability distributionP .
Performing this standard optimization program using Lagrange multipliers yields the

Gibbs distribution

P(q,q∗)(x1(i), x2(i)) = e−qx1(i)−q∗x2(i)

Z∞(q, q∗)
i > 1, (q, q∗) ∈ Dc (4.9)

with (q, q∗) and(γ = 〈X1〉, γ ∗ = 〈X2〉) related by

∂qF∞(q, q∗) = γ and ∂q∗F∞(q, q∗) = γ ∗. (4.10)

Thus, a natural model for the probability to observe(x1(i), x2(i)) is the ‘exponential’
Gibbs family (4.9), as a function of the ‘external’ control parameters(q, q∗) ∈ Dc, related
to the theoretical averages(γ, γ ∗) of the distribution as just mentioned.

Thus, the more visible the object is, through thejoint informationmassqvolumeq
∗
, the

larger the probability of this observation will be.
This actually is one of the postulates of statistical physics. Statistics is then concerned

with the problem of identifying the value of(q, q∗) which fits the observation sample the
best.

4.2.2. The maximum likelihood estimator of the scaling exponents.We shall recall how to
construct a maximum likelihood estimator of(q, q∗).

The log-Laplace transformF∞(q, q∗) is concave on the convex setDc. Its Legendre
transform

S(γ, γ ∗) := inf
(q,q∗)∈Dc

(γ q + γ ∗q∗ − F∞(q, q∗)) (4.11)

is well defined, non-negative and concave on the convex hull of(x1(i), x2(i))i>1.
Moreover,S(γ, γ ∗) = γ ∂γ S + γ ∗∂γ ∗S − F∞(∂γ S, ∂γ ∗S), with

(〈X1〉, 〈X2〉) = (γ, γ ∗).
Conversely, the control parameters(q, q∗) can be derived from(γ, γ ∗) by q = ∂γ S and
q∗ = ∂γ ∗S. The distributionP(q,q∗) is thus well parametrized by(γ, γ ∗), through

P(γ,γ ∗)(x1(i), x2(i)) = e−∂γ S.x1(i)−∂γ ∗S.x2(i)

Z∞(∂γ S, ∂γ ∗S)
i > 1. (4.12)

Note also thatS(γ, γ ∗) = S(P(γ,γ ∗)) is the Shannon entropy [25] evaluated at
P = P(γ,γ ∗).

A maximum likelihood estimator of(q, q∗), say (Q,Q∗), can therefore be
derived from an estimator(0, 0∗) of the theoretical averages(γ, γ ∗) by (Q,Q∗) =
(∂γ S(0, 0

∗), ∂γ ∗S(0, 0∗)).
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Now let (X1(k),X2(k))
K
k=1be an independentK-sample of the random variables

(X1, X2). Introducing the likelihood (i.e. the probability of theK-sample),V(γ,γ ∗) :=∏K
k=1P(γ,γ ∗)(X1(k),X2(k)), and searching for the value of(γ, γ ∗) maximizing this

likelihood, we get

X1(K) = 1

K

K∑
k=1

X1(k) and X2(K) = 1

K

K∑
k=1

X2(k).

The empirical averages are thus unbiased, efficient estimators of(γ, γ ∗), in the sense that
the expectation and variance–covariance underP(γ,γ ∗) are

(〈X1(K)〉, 〈X2(K)〉) = (γ, γ ∗) and Σ[X1(K),X2(K)] = − 1

K
H−1(γ, γ ∗).

The quantity−KH(γ, γ ∗) is the Fisher information matrix of theK-sample, withH the
Hessian matrix ofS(γ, γ ∗).

We also have the law of large numbers

(X1(K),X2(K)) →
K→∞

(γ, γ ∗) (4.13)

with P(γ,γ ∗)-probability one, and the central limit theorem

lim
K→∞

P(γ,γ ∗)(Σ−1/2((X1(K)− γ,X2(K)− γ ∗)′) 6 y) = erf(y) (4.14)

together with its large deviation counterpart [26]
1

K
logP(γ,γ ∗)(X1(K)→ γo, X2(K)→ γ ∗o ) →

K→∞
−K(P(γo,γ ∗o ) ‖ P(γ,γ ∗)). (4.15)

Here(γo, γ
∗
o ) are the observed empirical averages and

K(P(γo,γ ∗o ) ‖ P(γ,γ ∗)) =
∑
i>1

P(γo,γ ∗o )(x1(i), x2(i)) log
P(γo,γ ∗o )(x1(i), x2(i))

P(γ,γ ∗)(x1(i), x2(i))

is the Kullback non-negative information gain betweenP(γo,γ ∗o ) andP(γ,γ ∗). As a result,

K(P(γo,γ ∗o ) ‖ P(γ,γ ∗)) = S(γ, γ ∗)− S(γo, γ
∗
o )− (γ − γo, γ

∗ − γ ∗o )∇S(γ, γ ∗). (4.16)

4.2.3. A large deviation result.Now we come to the main result of this section. We
try to evaluate the (small) probability that the empirical averages of aK-sample converge
like X1(K)/X2(K) → α andX2(K) → γ ∗o , under the Gibbs probabilityPα,γ ∗ , fixing the
theoretical averages〈X1〉/〈X2〉 = α and〈X2〉 = γ ∗. It follows from (4.15) that

1

K
logPα,γ ∗

(
X1(K)

X2(K)
→ α,X2(K)→ γ ∗o

)
→

K→∞
−K(P(αγ ∗o ,γ ∗o ) ‖P(αγ ∗,γ ∗)) 6 0. (4.17)

So doing, the ratio of theoretical averages〈X1〉/〈X2〉 = α is held fixed. Here
X1(K)/X2(K) denotes the ratio of the empirical averages of the logarithm of mass and
the logarithm of volume.

Now the functionS(αγ ∗, γ ∗) is non-negative and non-decreasing. The line passing
through the origin which is tangent to theγ ∗-graph ofS(αγ ∗, γ ∗) has slope∂γ ∗S(αγ ∗, γ ∗) =
f∞(α) defined by (4.6) and hits this graph atγ ∗ := γ ∗(α). Hence, f∞(α) =
S(αγ ∗, γ ∗)/γ ∗(α).

It follows from (4.16) and (4.17) that, atγ ∗ = γ ∗(α),
1

K
logPα,γ ∗(α)

(
X1(K)

X2(K)
→ α, X2(K)→ γ ∗o

)
→

K→∞
S(αγ ∗o , γ

∗
o )− γ ∗o f∞(α) 6 0. (4.18)

This rate function has noexplicit dependence on the theoretical averageγ ∗ = γ ∗(α)
and this choice ofγ ∗ = γ ∗(α) is the unique way to realize this.
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4.2.4. Concluding remarks.As a conclusion, the condensed phase, where the partition
function itself converges, deserves its own thermodynamics. It certainly has been unduly
neglected in the literature concerning multifractals. Its outlines have been drawn in this
section, taking advantage of the Gibbs framework of maximum likelihood estimation.

We now come to the related construction and questions of a singular measure presenting
atoms and gaps.

4.3. Atoms:rmax,− = 0 andπmin,− > 0

As rmax,− := maxl=1,...,d rl,− → 0, while πmin,− := minl=1,...,d πl,− > 0, the sterile sub-
intervals shrink to become points to which non-null sub-masses are affected. Measureµ will
present atoms in the thermodynamic limitn→∞. In this context,rl,− = 0, l = 1, . . . , d;
hence,

∑m
l=d+1 rl,+ = 1 now expresses the volume conservation. As a result,τ(0) = −1,

in the previous construction. In contrast, the numberq+ still remains in the open interval
(0, 1). The formulae (4.1)–(4.4) only make sense forq∗ > 0, in which casez−(q, q∗) = 0,
as a result of 0q

∗ = 0. The functionZ(s, q, q∗) defined in (4.2) becomes

Z(s, q, q∗) = 1

1− bsz+(q, q∗) (4.19)

asq∗ > 0 ands 6 F(q, q∗) := min(0, F+(q, q∗)). It diverges elsewhere.
Observe that z+(q, q∗) := ∑m

l=d+1π
q

l,+r
q∗
l,+ is now subject to the constraint∑m

l=d+1 rl,+ = 1. Under this additional constraint, the functionτ(q) remains implicitly
defined byF+(q,−τ(q)) = 0, as in (4.4).

To take the atoms into account, the partition function (4.1) has to be replaced by its
‘grid’ version where ‘space’ is cut into equal pieces of lengthM−n (see [9, p 56] for a
similar account)

ZGn (q, q
∗) :=

Mn∑
i=1

π
q

i,nM
−nq∗ .

In this formula,πi,n is the mass attributed to theith sub-interval of lengthM−n at
resolutionn. This results from the fact that the solution of (4.1) appears ‘blind’ to the
atoms for whichz−(q, q∗) = 0.

If now τa,n(q) denotes the solution to

ZGn (q,−τa,n(q)) = 1

we obtain, lettingτa(q) = limn→∞ τa,n(q),

τa(q) = lim
n→∞ logM−n

Mn∑
i=1

π
q

i,n.

In other words, the functionτ(q), defined byF+(q,−τ(q)) = 0, has to be replaced by
its ‘atomic’ grid version

τa(q) := τ(q) if τ(q) 6 0 zero elsewhere (4.20)

with τa(0) = −1 andτa(q+) = 0 for 0< q+ < 1.
Define as before the Legendre transformf (α) := infq∈R(αq − τ(q)) for this particular

τ . It has the standard bell-shape, but its maximum is now−τ(0) = 1. The Hausdorff
spectrum of measureµ, with atoms, is now

fH(α) = f (α) · 1 (α > 0)+ 0 · 1 (α = 0) (4.21)
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adding the point(0, 0) to the graph off (α): this reflects the fact that atoms are points
where Ḧolder exponents are zero and that they form a set of (Lebesgue) measure zero.

Concerning the Legendre spectrum of measureµ, with atoms, it is

fa(α) := inf
q∈R
(αq − τa(q)). (4.22)

It has the form of the top and right portions of the previous graph offH down to
(α1, fH(α1)), combined with a straight line joining this point to the point(0, 0). Thus, for
a singular measureµ with atomsfH 6= fa [9].

4.4. Gaps:πmax,− = 0 andrmin,− > 0

As πmax,− := maxl=1,...,d πl,− → 0, the sterile sub-intervals, supported by non-null volumes
this time, will receive no mass. Measureµ will present gaps. Asπl,− = 0, l = 1, . . . , d, one
getsq+ = 1, since

∑m
l=d+1πl,+ = 1 is the new equation of mass conservation. However,

0> τ(0) > −1. The above construction (4.1)–(4.4) only makes sense forq > 0, in which
casez−(q, q∗) = 0. The functionZ(s, q, q∗) defined in (4.2) only makes sense in the
restricted domainq > 0 ands 6 F(q, q∗). The version of the functionτ(q) defined by
(4.4) with gaps is then

τg(q) := τ(q) if q > 0 zero otherwise (4.23)

with 0> τg(0) > −1 andτg(1) = 1.
Define as before the Legendre transformf (α) := infq∈R(αq − τ(q)) for this particular

τ . It has the standard bell-shape, with its maximum at−τ(0) < 1, expressing the fact that
gaps are present. The Hausdorff spectrum of measureµ, with atoms, is now

fH(α) = f (α) · 1 (α <∞)+ 1 · 1 (α = ∞) (4.24)

adding the point(∞, 1) to the graph off (α). This reflects the fact that gaps are points
where Ḧolder exponents are infinite and are of positive (Lebesgue) measure.

Concerning the Legendre spectrum of measureµ, with gaps it is

fg(α) := inf
q∈R
(αq − τg(q)). (4.25)

It has the form of the convex hull offH(α): only the left-hand side of the graph
of fH remains identical, up to the point(α0,−τ(0)), where fH attains its maximum,
fH(α0) = −τ(0) < 1, combined with a straight line joining this point to point(∞, 1).
Thus, for a singular measureµ with gapsfH 6= fg [9].

Remark 3.Starting fromτa(q), as defined by (4.20), observe that another functionτ ∗a (q
∗)

could be defined by

−τ ∗a (−τa(q)) = q and − τa(−τ ∗a (q∗)) = q∗.
These functions are the inverses of one another. The graph ofτ ∗a is of the type ‘τg’ of
some singular measure with gaps. As a result, a measureµ with atoms admits a reciprocal
measureµ∗ with gaps (and conversely), which is consistent with intuition.

Remark 4.Atoms, gaps and regular fragments may co-exist in the limit multifractal measure
µ. To see this, partition the set of sterile indicesL− := {1, . . . , d} into three mutually
disjoint sets(Lg−, La−, L

r
−) such thatL− = Lg− ∪ La− ∪ Lr−. These sets are defined by the

following properties

(πl,− = 0, rl,− > 0)l∈Lg− (πl,− > 0, rl,− = 0)l∈La− (πl,− > 0, rl,− > 0)l∈Lr− .
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The version with atom gaps of the functionτ(q) defined by (4.4) is then

τa,g(q) := τ(q) if q > 0 andτ(q) 6 0 zero otherwise.

5. Towards more general self-similar bridges

5.1. Geometrical construction of self-similar bridges

The above constructions can be extended in the following way: as was underlined in
the beginning of section 2, an equivalent way to look at the multifractal formalism of a
probability measure on [0, 1] is in terms of the distribution function at leveln, sayFn, the
graph of which is a path (or bridge) connectingA := (0, 0) andB := (1, 1). This path
becomes very irregular as resolutionn tends to infinity. However, in this context,Fn and
its limit, F , asn→∞, was restricted to be a non-decreasing function ofx (perhaps with
gaps or jumps), which is a very particular way to joinA andB. More general self-similar
bridges fromA to B can be constructed in the following way: initially, the connecting path
looks like a straight line joiningA andB.

At resolutionn = 1, define recursivelym points in the plane by

Xl = Xl−1+1l l = 1, . . . , m X0 = A Xm = B
with 1l := (πl, rl) whereπl and rl are now non-null real numbers, standing respectively
for the ordinate and abscissa of the increments. The conditionX0 = A, Xm = B translates
into

∑m
l=1πl = 1 and

∑m
l=1 rl = 1. Draw a line joiningXl−1 to Xl, l = 1, . . . , m. This

defines the(A,B)-path at resolutionn = 1 as a continuous broken line made ofm pieces.
Suppose there are now two types of suchm sublines: the ‘sterile’ onesl = 1, . . . , d < m−1
whose increments will be specified to be1l,− := (πl,−, rl,−) ∈ R2 − {0, 0}, l = 1, . . . , d,
such that

∑d
l=1πl,− := π− ∈ R − {0} and

∑d
l=1 rl,− := r− ∈ R − {0}. These

increments are sterile in the sense that the line joiningXl−1 to Xl will remain unchanged
in any subsequent step ifXl − Xl−1 = 1l,− is a sterile increment. Concerning the
b := m − d > 1 remaining ‘productive’ ones, their increments will be specified to be
1l,+ := (πl,+, rl,+) ∈ R2−{0, 0}, l = d+1, . . . , m, so that

∑m
l=d+1πl,+ := π+ = 1−π− ∈ R

and
∑m

l=d+1 rl,+ := r+ = 1−r− ∈ R. For each such productive increment, define recursively
m points in the plane by

Xl,l′ = Xl,l′−1+1l′
l,+ l′ = 1, . . . , m Xl,0 = Xl−1 Xl,m = Xl

with 1l′
l,+ := (πl,+πl′ , rl,+rl′).

The (A,B)-path at resolutionn = 2 is obtained while drawing a line joiningXl,l′−1 to
Xl,l′ , l

′ = 1, . . . , m, as soon asl is such thatXl − Xl−1 = 1l,+ is a productive increment,
leaving the sterile pieces unaffected. Upon indefinite iteration, we are also left with a
singular self-similar(A,B)-path in dimensionk = 2, the thermodynamic of which will be
our objective.

We shall distinguish two cases depending on the modulus of the increments.
The confined case.Here |πl| < 1 and|rl| < 1 for all l = 1, . . . , m, in which case the

(A,B)-path is forced to stay within some bounded set as we now briefly show.
We shall prove this on the abscissa of the path, a similar argument holding for the

ordinate. It is indeed possible to give a recurrent algorithm which yields, at resolutionn,
their maximal, sayX1,max(n), and minimal, sayX1,min(n), abscissa: indeed, at resolution
n−1,X1,min(n−1) andX1,max(n−1) yieldm local minima and maxima at stepn, depending
on the signs ofrl, l = 1, . . . , m. These have to be compared in order to extract the desired
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values at stepn. This results from self-similarity. The obtained recurrence is

X1,max(n) = max
l=1,...,m

( l−1∑
k=1

rk + rl(X1,max(n− 1)1(rl>0) +X1,min(n− 1)1(rl<0))

)

X1,min(n) = min
l=1,...,m

( l−1∑
k=1

rk + rl(X1,min(n− 1)1(rl>0) +X1,max(n− 1)1(rl<0))

)
.

Moreover, 16 X1,max(n) and 0> X1,min(n).
Assuming|rl| < 1 for all l = 1, . . . , m yields a convergent algorithm. Indeed, indexing

with a ‘+’ the q values of the indexl, say l+1 , . . . , l
+
q , associated with a positive value of

rl and with a ‘−’ the m− q remaining ones, the above recurrent equations yield the finite
valueX1,max := limn→∞X1,max(n)

X1,max= max
j ′=1,...,m−q
j=1,...,m−q
i=1,...,q

(∑l+i −1
k=1 rk

1− rl+i
,

l−i −1∑
k=1

rk + rl−j
∑l+i −1

k=1 rk

1− rl+i
,

∑l−j −1
k=1 rk + rl−j

∑l−
j ′ −1

k=1 rk

1− rl−j rl−j ′

)
.

ConcerningX1,min := limn→∞X1,min(n), it is the minimum over the same set of indices
of the same values.

Thus, the(A,B)-path abscissa remains in the finite interval [X1,min, X1,max]. In a
similar way, its ordinate remains in the finite interval [X2,min, X2,max] substituting πk
to rk in the above expressions, so that the(A,B)-path remains as a whole within
[X1,min, X1,max] × [X2,min, X2,max].

The unconfined case.Here|πl,+| > 1 or |rl,+| > 1 for somel = d+1, . . . , m, in which
case the(A,B)-path is not confined within any bounded region of the plane: ‘giant’ (i.e.
singularly large) pieces will co-exist with ‘tiny’ (i.e. singularly small) and ‘regular’ pieces
in the (A,B)-path. The prospective study of this case that follows will concentrate on the
analysis of the sequence of curves generated as resolution increases.

Remark 5. These(A,B)-paths are fractal lines joiningA and B, just like a Von Koch
curve (for example) is one, but a Von Koch curve is only a monofractal whichcannot be
generated this way: an appeal to a geometrical representation ofsubstitutionsis necessary
[27, 28].

Remark 6.These constructions can easily be extended to any Euclidean dimensionk.

Remark 7. Jumps along the abscissa, ordinate and regular sublines may co-exist in the
limit (A,B)-path. To do this, partition the set of sterile indicesL− := {1, . . . , d} into
three mutually disjoint sets(L1

−, L
2
−, L

3
−) such thatL− = L1

− ∪ L2
− ∪ L3

−. These sets
are defined by the properties(|πl,−| = 0, |rl,−| > 0)l∈L1− , (|πl,−| > 0, |rl,−| = 0)l∈L2− and
(|πl,−| > 0, |rl,−| > 0)l∈L3− , therefore allowing(πl,−, rl,−) to take the value zero in some
places.

Remark 8.If (rl)l=1,...,m ∈ (0, 1) while (πl)l=1,...,m ∈ R− {0} in the above construction, an
(A,B)-path is still the distribution function of some signed real-valued Borel measure
µ supported by the interval [0, 1]. The distribution functionx ∈ [0, 1] → F(x) :=
µ([0, x]) ∈ R is only right-continuous withµ([0, 1]) = 1, but remains self-similar. We
thus relaxed the conditions thatµ is [0, 1]-valued and thatF(x) should be non-decreasing,
while maintaining the other constraints: this represents, for example, the distribution of a
unit chargeon the unit interval [0, 1].
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Thus, self-affine functions are special cases of bridges as introduced in this section. They
have also been studied widely, especially from a multifractal point of view by Jaffard [29],
who showed that, in general, the multifractal formalism for functions only yields an upper
bound for the singularity spectrum, whereas it is exact for self-similar ones (with a definition
of ‘self-similarity’ which does not exactly fit with ours (see our conclusion in section 6)).
Also, Falconer and O’Neil [30] have taken into account vector-valued multifractal measures,
a special case of which are the self-affine functions just mentioned.

If (πl)l=1,...,m ∈ (0, 1) while (rl)l=1,...,m ∈ R − {0} in the above construction, an
(A,B)-path represents a physical phenomenon where a volume contraction is permitted
while adding mass (or even charge ifπl < 0 for somel) within the system.

5.2. Statistics of the(A,B)-path trail

5.2.1. Partition function analysis.We now come to the extension of the thermodynamic
formalism to such(A,B)-paths, which amounts to the parametrization of the abscissa
of the (A,B)-path by its ordinate (a reciprocal problem would of course consist in a
parametrization of the ordinate by the abscissa).

Let πl,± = |πl,±| e−iπbl(πl,±), l = 1, . . . , m, be the modulus–phase representation of
πl,±, with bl(πl,±) = 0 if πl,± > 0, and bl(πl,±) = 1 if πl,± < 0, controlling the
sign of πl,± := (πl,+, πl,−). (Note that bl(πl,±) = 1

2(1 − sign(πl,±)).) In a similar
way, let rl,± = |rl,±| e−iπbl(rl,±), l = 1, . . . , m, be the modulus–phase representation of
rl,± := (rl,+, rl,−).

For (q := (q1, q2), q
∗ := (q∗1, q∗2)) ∈ R4, define the extended level-n partition function

Zn(q, q
∗) :=

Nn∑
i=1

|πi(n)|q1 e−q2b(πi (n))|ri(n)|q∗1 e−q
∗
2b(ri (n)) Zn(0, 0) = Nn (5.1)

where(|πi(n)|, b(πi(n)); |ri(n)|, b(ri(n)))i=1,...,Nn is the vector of increments’ representation
attached to each of theNn available(A,B)-path pieces at resolutionn.

FunctionZn(q, q∗) is now defined recursively by

Zn+1(q, q
∗) = z−(q, q∗)+ Zn(q, q∗)z+(q, q∗) Z0(q, q

∗) = 1 (5.2)

with

z−(q, q∗) :=
d∑
l=1

|πl,−|q1 e−q2bl(πl,−)|rl,−|q∗1 e−q
∗
2bl(rl,−)

and

z+(q, q∗) :=
m∑

l=d+1

|πl,+|q1 e−q2bl(πl,+)|rl,+|q∗1 e−q
∗
2bl(rl,+).

Next define the generating functionZ(s, q, q∗) :=∑n>0 b
snZn(q, q

∗). It follows from
(5.2) that

Z(s, q, q∗) = 1− bs(1− z−(q, q∗))
(1− bs)(1− bsz+(q, q∗)) (5.3)

provideds 6 F(q, q∗) := min(0, F+(q, q∗)), with F+(q, q∗) := − logb z+(q, q
∗), and is

undefined otherwise.
The functionF+ : R4 → R is concave and analytic, satisfyingF+(0, 0) = −1. The

functionF is also concave but only continuous, and this is the signature of aphase transition
while crossing the critical domain:{(q, q∗) ∈ R4 : F+(q, q∗) = 0}.
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It now follows from (5.3) that

lim
n→∞− logNn Zn(q, q

∗) = F(q, q∗). (5.4)

Depending on whether one is in a confined or unconfined situation, the analysis may
vary.

5.2.2. The confined case.Suppose first that the(A,B)-path is confined. We wish here to
derive the thermodynamics of the modulus–phase information on the abscissa against the
modulus-phase information on the ordinate (see the definitions of the setsS1(α;γ ∗) and
S2(α

′; γ ∗), later).

The critical domain equations.Define then the two functionsτ(q) := (τ1(q), τ2(q))
implicitly by

F+(q, (−τ1(q), 0)) = 0 (5.5)

and

F+(q, (0,−τ2(q))) = 0. (5.6)

These functions are particular cuts(τ1(q) := τ̃1(q, 0), τ2(q) := τ̃2(0, q)) of the two
functions(̃τ1(q, q

∗
2), τ̃2(q

∗
1, q)) defined respectively by

F+(q, (−τ̃1(q, q
∗
2), q

∗
2)) = 0 and F+(q, (q∗1,−τ̃2(q

∗
1, q))) = 0.

The equationsq∗1 = τ̃1(q, q
∗
2) andq∗2 = τ̃2(q

∗
1, q) are two alternative descriptions of the

critical domain{(q, q∗) ∈ R4 : F+(q, q∗) = 0}.
Each deserves a particular study.
• Concerning the functionτ1 : R2 → R, it is concave and analytic, and is defined

by
∑m

l=d+1 |πl,+|q1 e−q2bl(πl,+)|rl,+|−τ1(q) = 1. At q = 0, it takes the valueτ1(0) defined
uniquely by

∑m
l=d+1 |rl,+|−τ1(0) = 1, with τ1(0) < −1 if and only if

∑m
l=d+1 |rl,+| > 1.

• Concerning the functionτ2, implicitly defined by
m∑

l=d+1

|πl,+|q1 e−q2bl(πl,+) eτ2(q)bl (rl,+) = 1

we have

τ2(q) = − log

(
z+−(q1)+ z−−(q1) e−q2

1− (z++(q1)+ z−+(q1) e−q2)

)
where(z++, z+−, z−+, z−−) are defined by

z+(q, (0, q∗2)) = z++(q1)+ z+−(q1) e−q
∗
2 + z−+(q1) e−q2 + z−−(q1) e−q2 e−q

∗
2

upon specifying the joint positiveness (or not) of(πl,+, rl,+)l=d+1,...,m.
Hence, the functionτ2 is concave and analytic, on the convex domain defined by

{(q1, q2) ∈ R2 : (z−−(q1)+ z+−(q1) e−q2) < 1}
not including zero.

The Legendre transforms ofτ1(q), τ2(q). Define next their Legendre transforms
(f1(α), f2(α

′)) with

f1(α) := inf
q∈R2

(〈α, q〉 − τ1(q)) (5.7)

f2(α
′) := inf

q∈R2
(〈α′, q〉 − τ2(q)). (5.8)
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We are then led to the idea that a bispectrum should be meaningful when parametrizing
the abscissa of a self-similar(A,B)-path by its ordinate: this is a result of the reduction
factors being allowed to be negative, and hence encoded by both their moduli and signs.

Concerning the Legendre transformf1(α), its dual system of Legendre variables
α := (α1, α2) is defined on its (bounded) Ḧolder range which is the polygonal convex
hull, sayH , of the points(− log |πl,+|/− log |rl,+|, b(πl,+)/− log |rl,+|)l=d+1,...,m.

Concerning the Legendre transformf2(α
′), its dual system of Legendre variables

α′ := (α′1, α′2) is defined on its (unbounded) Hölder range which is the polygonal convex
hull, sayH ′, of the points(− log |πl,+|/b(rl,+), b(πl,+)/b(rl,+))l=d+1,...,m. This domain is
included in the unbounded domain [minl(− log |πl,+|/b(rl,+)),∞]×[0,∞], upon projecting.

We shall call these functions the Legendre spectra of the self-similar(A,B)-path: each
is non-negative, concave and analytic on its definition domain. Functionf1 attains its
maximum atα0 := (α1,0, α2,0) which is the centre of gravity of the extremal points of
H . Moreover,f1(α0) = −τ1(0). Concerning the functionf2, the centre of gravity of the
extremal points ofH ′, sayα′0 := (α′1,0, α′2,0), is rejected at infinity.

The functions(f1(α), f2(α)) are identified with the Hausdorff spectra of the self-similar
(A,B)-paths just constructed. We now come to the interpretation of these functions.

The thermodynamical interpretation.Define the setS1(α;γ ∗) by{
i ∈ [Nn] :

− log |πi(n)|
− log |ri(n)| → α1,

b(πi(n))

− log |ri(n)| → α2;− logNn |ri(n)| → γ ∗
}

and letN1
n (α; γ ∗) := #{S1(α; γ ∗)} be the cardinal of this set. It is the number of atoms

whose first Ḧolder exponent isα and for which |ri(n)| ∼ N−γ
∗

n (γ ∗ > 0).
In a similar way, define the setS2(α

′; γ ∗) by{
i ∈ [Nn] :

− log |πi(n)|
b(ri(n))

→ α′1,
b(πi(n))

b(ri(n))
→ α′2;

b(ri(n))

logNn
→ γ ∗

}
and N2

n (α
′; γ ∗) := #{S2(α

′; γ ∗)} its cardinal. It is the number of atoms whose second
Hölder exponent isα′ and for which b(ri(n)) ∼ logNγ ∗

n . We learn from large deviation
theory that

lim
n→∞ logNn N

1
n (α; γ ∗) = f 1

α (γ
∗) (5.9)

lim
n→∞ logNn N

2
n (α
′; γ ∗) = f 2

α′(γ
∗) (5.10)

wheref 1
α (γ

∗) (respectively,f 2
α′(γ

∗)) is theα-cut (respectively,α′-cut):

f 1
α (γ

∗) = f 1(α1γ
∗, α2γ

∗, γ ∗) (respectively, f 2
α′(γ

∗) = f 2(α′1γ
∗, α′2γ

∗, γ ∗))

with

f 1(γ1, γ2, γ
∗) := inf

(q,q∗)∈R3
(〈γ, q〉 − F(q, (q∗1, 0)))(

respectively, f 2(γ1, γ2, γ
∗) := inf

(q,q∗)∈R3
(〈γ, q〉 − F(q, (0, q∗2)))

)
.

The functionf 1
α (γ

∗) possesses the following properties. For anyα ∈ H , it is positive
concave as a function ofγ ∗. It takes the maximal valueσ(α) := f 1

α (0, 0). There exists a
unique line passing through the origin which is tangent to theγ ∗-graph off 1

α (γ
∗) and whose

slope isf1(α). This line hits this graph atγ ∗ := γ ∗1 (α). Hence,f1(α) = f 1
α (γ

∗
1 (α))/γ

∗
1 (α).
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Defining r1
n(α) := N−γ ∗1 (α)n , we get as in section 3

lim
n→∞ log1/r1

n (α)
N1
n (α; γ ∗1 (α)) = f1(α). (5.11)

Working in a similar way onf 2
α′(γ

∗), we get withr2
n(α
′) := N

−γ ∗2 (α′)
n and f2(α

′) =
f 2
α′(γ

∗
2 (α

′))/γ ∗2 (α
′)

lim
n→∞ log1/r2

n (α
′) N

2
n (α
′; γ ∗2 (α′)) = f2(α

′). (5.12)

Concluding remarks. In this first extension, confined(A,B)-paths are the outcome of
a deterministic conservative multiplicative cascade whose reduction factors are allowed
to be negative, but less than one in modulus. As a result, the partition function should
enclose information on both their moduli and signs: an immediate analysis extending that
of multifractal measures holds.

5.2.3. The unconfined case.Suppose now that the(A,B)-path is unconfined. We shall
limit ourselves to the particular case|rmax,+| := maxl=d+1,...,m |rl,+| > 1 and |rmin,+| :=
minl=d+1,...,m |rl,+| < 1, while |πl,+| < 1, l = d + 1, . . . , m (a complete study of all the
situations that can arise is left to a future work).

As was noted previously, giant fragments co-exist with tiny ones in the(A,B)-path,
and one expects the previous analysis to change in a drastic way. This is what happens,
and it affects the functionτ1.

Equation (5.5) that defines the functionτ1 takes the equivalent form

z+(q, (−τ1(q), 0)) = 1

with z+(q, q∗1) := z+(q, (q∗1, 0)) =∑m
l=d+1 |πl,+|q1 e−q2bl(πl,+)|rl,+|q∗1 .

This function, as a function ofq∗1, is now such thatz+(q, q∗1) →
q∗1→±∞

+∞, as a result

of |rmax,+| > 1 and|rmin,+| < 1. It now has a unique absolute minimumq∗1(q) defined by

∂q∗1z+(q, q
∗
1(q)) = 0.

Moreover,z+(q, q∗1(q)) > 0. Thus equation (5.5) now has none, one or two solutions,
depending on whetherz+(q, q∗1(q)) > 1,= 1, or<1, respectively: the unique solution now
bifurcates into two solutions.

Supposez+(q, q∗1(q)) < 1, so that equation (5.5) has two solutions there. This defines
a convex domain, sayC, in theq-plane, not includingq = 0. In this domain, we letτ s1(q),
τ l1(q) denote these two solutions, with of course

τ s1(q) = τ l1(q) if q ∈ ∂C := {q ∈ R2 : z+(q, q∗1(q)) = 1}
which shows that the two solutions merge at the boundary∂C of the domainC. Moreover,
|∇τ s,l1 (q)| → +∞ asq approaches∂C.

The functionτ s1(q) : C → R is monotone increasing and concave whileτ l1(q) : C → R
is monotone decreasing and convex. The functionτ s1(q) is representative of the tiny
(small) fragments constituting the(A,B)-path, for which|ri(n)| →

n→∞0, whereasτ l1(q) is

representative of its giant (large) pieces, for which|ri(n)| →
n→∞+∞. Considering their

Legendre transforms(f s1 (α), f
l
1(α)) with

f
s,l
1 (α) := inf

q∈C
(〈α, q〉 − τ s,l1 (q))
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we have:
• f s1 (α) > 0 with α := (α1 > 0, α2 > 0) defined on the induced (unbounded) Hölder

range;
• f l1(α) 6 0 with α := (α1 < 0, α2 < 0) defined on the induced (unbounded) Hölder

range.
We now come to the interpretation of these functions(f s1 (α), f

l
1(α)). Remember that

N1
n (α; γ ∗) := #{S1(α; γ ∗)} is the number of atoms whose first Hölder exponent isα and

for which |ri(n)| ∼ N−γ
∗

n . Two cases may now arise depending on the type of fragments
of interest (tiny or giant, respectively).
• γ ∗ > 0, so that|ri(n)| →

n→∞0: letN1,s
n (α; γ ∗) denote the cardinal of the setS1(α; γ ∗)

when γ ∗ is forced to be positive. Following the above analysis, there exists a unique
γ ∗s (α) > 0, such that, ifrsn(α) := N−γ ∗s (α)n , then

lim
n→∞ log1/rsn(α)

N1,s
n (α; γ ∗s (α)) = f s1 (α) > 0

extending (5.11).
• γ ∗ < 0, so that|ri(n)| →

n→∞+∞: if N1,l
n (α; γ ∗) denotes the cardinal of the set

S1(α; γ ∗) whenγ ∗ is forced to be negative, there exists a uniqueγ ∗l (α) < 0, such that, if

rln(α) := N−γ ∗l (α)n , then

lim
n→∞ log1/rln(α)

N1,l
n (α; γ ∗l (α)) = f l1(α) 6 0

which is the version of (5.11) for the very large pieces constituting the(A,B)-path.

Example. Let d = 0, m = 2, π1,+ = π2,+ = 1/2 and r1,+ = α (the golden number
(1+√5)/2), r2,+ = −1/α.

Dropping the information on sign(q2 = 0), we get

z1(q1; q∗1) = ( 1
2)
q1(αq

∗
1 + α−q∗1 ).

The unique minimumq∗1(q1) is defined byαq
∗
1 (q1) = α−q

∗
1 (q1)(∂q∗1z1 = 0), and hence

q∗1(q1) = 0 andz1(q1; q∗1(q1) = 0) := ( 1
2)
q1−1 has to be compared to 1. Ifq1 < 1 there is

no solution to the degree-two equationz1(q1; q∗1) = 1, if q1 = 1 there is one solution to
z1 = 1, while q1 > 1 yields the two solutions

q∗1 := −τ l1(q1) = logα(2
q1−1+

√
22(q1−1) − 1)

q∗1 := −τ s1(q1) = logα(2
q1−1−

√
22(q1−1) − 1).

The Legendre transformf s1 (α1) of τ s1(q1) is positive with support [logα 2,+∞). It is
increasing and diverges atα1 = ∞. Concerning the Legendre transformf l1(α1) of τ l1(q1), it
is negative with support(−∞,− logα 2]. This function decreases and diverges atα1 = −∞.

5.3. Statistics of the(A,B)-path graph

5.3.1. Spacetime partition function.In the above construction, we were interested in the
statistics of an(A,B)-path trail, when the abscissa is parametrized by the ordinate. Adding
one dimension to this problem amounts to developing this trail in time. So doing, we gain
some insight into the(A,B)-path graph; some walker is now assumed to take a unit time
to reachB, starting fromA. An (A,B)-path graph is thus an(A′, B ′)-path trail where
A′ := (0, 0, 0), B ′ := (1, 1, 1) with the first two components relative to space (abscissa
and ordinate if the dimension of the underlying Euclidean space isk = 2) and the third
component relative to (non-decreasing) time.
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For (q := (q1, q2), q
∗ := (q∗1, q∗2), p) ∈ R2k+1, define the extended spacetime level-n

partition function

Zn(q, q
∗, p) :=

Nn∑
i=1

|πi(n)|q1 e−q2b(πi (n))|ri(n)|q∗1 e−q
∗
2b(ri (n))ti(n)

p Zn(0, 0, 0) = Nn

where(|πi(n)|, b(πi(n)); |ri(n)|, b(ri(n)); ti(n))i=1,...,Nn is the vector of increments attached
to each of theNn available(A,B)-path graph pieces at resolutionn.

We assume, with little loss of generality thatti(n) = N−1
n : the fraction of time spent by

the walker on chunki ∈ [Nn] is identical for any chunk. A model for which the(0, 1)-valued
fraction of time (say(tl,−)l=1,...,d , (tl,+)l=d+1,...,m) spent by the walker depends on the type of
chunk under consideration is easy to imagine and to handle: the walker would trigger a clock
specific to each type of chunk he experiences. It is, therefore, assumed in the following
that tl,− = tl,+ = m−1 which is consistent with

∑
l=1,...,d tl,− +

∑
l=d+1,...,m tl,+ = 1.

Now Zn(q, q
∗, p) is defined recursively by

Zn+1(q, q
∗, p) = z−(q, q∗, p)+ Zn(q, q∗, p)z+(q, q∗, p), Z0(q, q

∗, p) = 1 (5.13)

with

z−(q, q∗, p) :=
d∑
l=1

|πl,−|q1 e−q2bl(πl,−)|rl,−|q∗1 e−q
∗
2bl(rl,−)t

p

l,−

and

z+(q, q∗, p) :=
m∑

l=d+1

|πl,+|q1 e−q2bl(πl,+)|rl,+|q∗1 e−q
∗
2bl(rl,+)t

p

l,+.

Here tl,− = tl,+ = m−1, under our hypothesis.
Define the generating function

Z(s, q, q∗, p) :=
∑
n>0

bsnZn(q, q
∗, p).

It follows from (5.13) that

Z(s, q, q∗, p) = 1− bs(1− z−(q, q∗, p))
(1− bs)(1− bsz+(q, q∗, p)) (5.14)

provideds 6 F(q, q∗, p) := min(0, F+(q, q∗, p)), with

F+(q, q∗, p) := − logb z+(q, q
∗, p)

the functionz is undefined otherwise.

5.3.2. The equation of the spacetime critical domain.One wishes here to study the
asymptotic behaviour of the(A,B)-path pieces borrowed by the walker which reduces
to the understanding of the setB(α;α∗) defined in subsection 5.3.4.

The functionF+ : R5 → R is concave and analytic, satisfyingF+(0, 0, 0) = −1, and
F+(0, 0, logm b) = 0. The functionF is also concave but only continuous, and we have a
phase transitionwhile crossing the critical domain:

{(q, q∗, p) ∈ R5 : F+(q, q∗, p) = 0}.
It is now a consequence of (5.14) that

lim
n→∞− logNn Zn(q, q

∗, p) = F(q, q∗, p). (5.15)



2586 T Huillet and B Jeannet

Now define the functionτ(q, q∗) implicitly by

F+(q, q∗,−τ(q, q∗)) = 0.

In developed form

z+(q, q∗,−τ(q, q∗)) =
m∑

l=d+1

|πl,+|q1 e−q2bl(πl,+)|rl,+|q∗1 e−q
∗
2bl(rl,+)t

−τ(q,q∗)
l,+ = 1. (5.16)

It has (under our simplifying assumptionstl,− = tl,+ = m−1) the explicit expression

τ(q, q∗) = − logm z+(q, q
∗)

with z+(q, q∗) := z+(q, q∗, 0).
The functionτ : R4 → R is concave and analytic. At(q, q∗) = (, 0), it takes the

valueτ(,) = − logm b > −1.

5.3.3. The Legendre transform.Define next its Legendre transformf (α, α∗) by

f (α, α∗) := inf
(q,q∗)∈R4

(〈α, q〉 + 〈α∗, q∗〉 − τ(q, q∗)). (5.17)

Its dual system of Legendre variablesα := (α1, α2) and α∗ := (α∗1, α
∗
2) is defined

on its (bounded) Ḧolder range which is the polygonal convex hull, sayH , of the points
(− logm |πl,+|, b(πl,+)/ logm,− logm |rl,+|, b(rl,+)/ logm)l=d+1,...,m.

We shall call this function the Legendre spectrum of the self-similar(A,B)-path graph:
it is non-negative, concave and analytic on its definition domain. The functionf attains its
maximum at(α0, α

∗
0) which is the centre of gravity of the extremal points ofH . Moreover,

f (α0, α
∗
0) = −τ(,) < 1, expressing the fact that macroscopic fragments are present

within such(A,B)-paths.

5.3.4. The thermodynamical interpretation.We now come to the interpretation of this
function.

Define the setB(α;α∗) by{
i ∈ [Nn] :

− log |πi(n)|
logNn

→ α1,
b(πi(n))

logNn
→ α2; − log |ri(n)|

logNn
→ α∗1,

b(ri(n))

logNn
→ α∗2

}
and letNn(α;α∗) := #B(α;α∗) be the cardinal of this set. It is the number of atoms
in the (A,B)-path graph whose Ḧolder exponent is(α, α∗). Note that the quantity logNn
normalizing the spatial information in the above setS is nothing but− log ti(n), under our
hypothesis thatti(n) = N−1

n .
Large deviation theory tells us that

lim
n→∞ logNn Nn(α;α∗) = f (α, α∗). (5.18)

In this context, the functionf (α, α∗) is also of some importance, since it coincides
with the Hausdorff spectrum of the singular part of the self-similar(A,B)-path graph just
constructed; in other words,f (α, α∗) = fH(α, α

∗) is the Hausdorff dimension of the set
B(α;α∗).

(The proof of this assertion can also be derived while readily adapting [10, theorem 16,
p 13], transferring results from the code space to the embedding geometrical space.)

Remark 9. Of course, it is still possible to focus on the regular part of the(A,B)-path
graph. This analysis would follow that explained in section 4.2: indeed, observe that for
(q, q∗, p) ∈ Dc, with

Dc := {(q, q∗, p) ∈ R5 : F+(q, q∗, p) > 0}
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we have the limit result for the partition function

lim
n→∞− logZn(q, q

∗, p) = − log

(
lim
s→0−

(1− bs)Z(s, q, q∗, p)
)

:= F∞(q, q∗, p).

Here,

F∞(q, q∗, p) := − log
z−(q, q∗, p)

1− z+(q, q∗, p) .

Defineτ∞(q, q∗) by

F∞(q, q∗,−τ∞(q, q∗)) = 0.

We have explicitly

τ∞(q, q∗) = − logm(z−(q, q
∗)+ z+(q, q∗)).

We shall then callf∞(α, α∗), with

f∞(α, α∗) := inf
(q,q∗)∈R4

(〈α, q〉 + 〈α∗, q∗〉 − τ∞(q, q∗))

the Hölder spectrum of the regular part of the(A,B)-path graph.

5.3.5. Concentrating on the length of the(A,B)-path trail. This geometrical information
is quite important: suppose one is, for example, interested in thelength of the (A,B)-path
trail, in the confined case. Then, one should focus only on the moduli of the available
chunks, dropping the information on the signs.

Let thenf (α1, α
∗
1) be the Legendre transform ofτ(q1, q

∗
1) = − logm z+(q1, q

∗
1) with

z+(q1, q
∗
1) :=

m∑
l=d+1

|πl,+|q1|rl,+|q∗1 (5.19)

settingq2 = q∗2 = 0 into z+(q, q∗).
In the confined case, the Legendre variables(α1, α

∗
1) vary in the polygonal convex hull

of the points(− logm |πl,+|,− logm |rl,+|)l=d+1,...,m and are thus positive.
Define the set

B(α1, α
∗
1) =

{
i ∈ [Nn] :

− log |πi(n)|
logNn

→ α1; − log |ri(n)|
logNn

→ α∗1

}
and let Nn(α1, α

∗
1) := #B(α1, α

∗
1) be its cardinal. For the atoms withinB(α1, α

∗
1):

|πi(n)| ∼
n→∞N

−α1
n and |ri(n)| ∼

n→∞N
−α∗1
n . Therefore, the modulus

‖Xi(n)‖2 := (πi(n)2+ ri(n)2)1/2

of these atoms grows like‖Xi(n)‖2 ∼
n→∞N

−min(α1,α
∗
1)

n , and there areNn(α1, α
∗
1) ∼n→∞N

f(α1,α
∗
1)

n

such atoms.
Consider now the moduli partition function, for any real numberδ:

Mn(δ) :=
Nn∑
i=1

(πi(n)
2+ ri(n)2)δ/2.

Observe thatln := Mn(1) is the length of the(A,B)-path trail, at resolutionn.
The contribution toMn(δ) of the atoms ofB(α1, α

∗
1) grows like

Mn(δ, α1, α
∗
1) ∼

n→∞N
f(α1,α

∗
1)

n N
−δmin(α1,α

∗
1)

n .
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It is the product of their numbersN
f(α1,α

∗
1)

n by their ‘modulusδ ’ N
−δmin(α1,α

∗
1)

n .
Letting α1 := αα∗1 andfα(α∗1) := f (αα∗1, α∗1), we also have

Mn(δ, α, α
∗
1) ∼

n→∞N
fα(α

∗
1)−δmin(αα∗1,α

∗
1)

n . (5.20)

If α < 1, this reduces toMn(δ, α, α
∗
1) ∼n→∞N

fα(α
∗
1)−δαα∗1

n . The maximal contribution to

Mn(δ) is attained atα∗1,o = α∗1,o(δ, α) defined byf ′α(α
∗
1,o) = δα. At pointsα∗1 = α∗1,o, the

quantityfα(α∗1)− δαα∗1 is strictly positive or negative. This quantity vanishes at the unique
point α∗1,o := α∗1,o(α) defined byf ′α(α

∗
1,o) = l(α), with l(α) the Legendre transform of the

function τ ∗1 (q1) defined as usual by
m∑

l=d+1

|πl,+|q1|rl,+|−τ ∗1 (q1) = 1.

This defines a uniqueδ := δ(α) by αδ(α) = l(α).
If α > 1, Mn(δ, α, α

∗
1) ∼n→∞N

fα(α
∗
1)−δα∗1

n . The uniqueδ(α) under interest is now defined

by δ(α) = l(α).
Putting all this together, we get

δ(α) = l(α)/min(α, 1) (5.21)

and

Mn(α) := Mn(δ(α), α, α
∗
1,o(α)) ∼

n→∞1.

We shall call δ(α) the geometricalα-dimension of the(A,B)-path trail. It is the
geometrical multifractal spectrum associated to the set of atoms

B(αα∗1,o(α), α
∗
1,o(α)) =

{
i ∈ [Nn] :

− log |πi(n)|
− log |ri(n)| → α,− logNn |ri(n)| → α∗1,o(α)

}
.

The contribution toMn(δ) of Mn(α) is maximal and one. It is neither zero nor infinity
and the setB(αα∗1,o(α), α

∗
1,o(α)) carries all the information ‘modulusδ ’.

The contribution to the total lengthln := Mn(1) of the atoms within set
B(αα∗1,o(α), α

∗
1,o(α)) is

ln(α) := Mn(1, α, α
∗
1,o(α)).

It follows from the above results that

ln(α) ∼
n→∞N

ζ(α)
n (5.22)

with ζ(α) = min(α, 1)α∗1,o(α)(δ(α)− 1). For thoseα for which theα-dimensionδ(α) > 1,
ln(α) diverges, as conventional wisdom suggests.

Remark 10.A similar study is possible on theθ -partition function defined by

Sn(θ) :=
Nn∑
i=1

(e2b(πi (n)) + e2b(ri (n)))θ/2

which focuses on the number of occurrences of negative elementary reduction factors(
b(πi(n)) =

n∑
j=1

b(πlj (i)), b(ri(n)) =
n∑
j=1

b(rlj (i))

)
in the unique multiplicative decomposition of each of the increments(

πi(n) :=
n∏
j=1

πlj (i), ri(n) :=
n∏
j=1

rlj (i)

)
.
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6. Concluding remarks

This work is an attempt towards generalizing the usual construction and analysis of
multifractal measures in two directions. The first consists in considering mixtures of
absolutely continuous and purely singular measures through an iterating function system
(IFS) with ‘sterile’ parts. Measures with atoms or gaps are easily introduced as limiting
situations in this framework. We have proceeded with the thermodynamical study of these
sterile parts in the IFS, using a Gibbs formalism.

Then, we have bridged the gap between measures towards functions and more generally
towards ‘bridges’, while allowing the ‘reduction factors’ attributed to the maps of the IFS
to be negative. It should be noted that the relation to [29, 30] is through the special case
where the reduction factors in one dimension of space are positive numbers, whereas those
in other dimensions of space are allowed to be real numbers, but summing up to one.
Then, a bridge is the graph of a self-similar function or, in other words, the graph of the
distribution function of a one-dimensional vector-valued self-similar measure. As in [30],
this work generalizes thus self-affine functions [29] but in a different direction than [30]:
not to measures in higher-dimensional spaces but to more general(A,B)-bridges or paths.
Consequently, the approach developed in this work is different in the sense that it focuses
on the properties of the object as a subset of the plane, and not as a real-valued measure
on the line.

For such paths, the main lines of the multifractal formalism have been derived. These
paths are allowed to be constituted with both macroscopic and microscopic fragments, each
deserving its specific statistics, while remaining continuous, exploiting the ideas developed
in the first part of the work on measures. Discontinuous paths may also be considered with
some information related to the statistics of their jumps.
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