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Abstract. We derive the thermodynamics of self-similar paths (or bridges) joining the two
points A := (0,0) and B := (1, 1) of the plane. These paths may be constituted with both
macroscopic and microscopic fragments, each deserving its specific statistics, while remaining
continuous. Such discontinuous paths are also studied with some information related to the
statistics of their jumps.

If the bridges under study are bound to be non-decredsing)-paths, this study coincides
with the one of multifractal measures on the unit interval. Relaxing this condition leads to an
extension of the multifractal formalism whose main lines are derived here.

1. Introduction

Multifractal measures on the unit interval and their associated spectra have been designed
by physicists [1-3] in order to understand problems arising in the natural sciences: in
fully developed turbulence, they allow the investigation of the intermittent behaviour in the
high-vorticity domain; in diffusion limited aggregation, they are designed to compute the
probability that a random walker hits the neighbourhood of a particular site of an aggregate
[4,5]. They are also studied in dynamical system theory to measure how often a given
region of the attractor is visited.

In terms of the equivalent distribution function of such measures, their graph is bound
to be a non-decreasing!, B)-path, joining the two pointai := (0, 0) and B := (1, 1) of
the plane.

We first derive, in sections 2—-4, the thermodynamics of such self-similar paths (or
bridges) joining the two pointgt and B of the plane. These paths may be constituted of
both microscopic (singular) and macroscopic (regular) fragments, each deserving its specific
statistics, while first remaining continuous: in the first ‘diluted’ regime, the partition function
of the fragments is renormalizable, while it converges in the second ‘condensed’ regime; a
phase transition separates these regimes. In the condensed regime, we propose a description
of the regular part of these objects, based on Gibbs’ statistics. Such discontinuous paths are
also studied with information related to the statistics of their jumps.

Relaxing the condition that the path should be non-decreasing leads to an extension of
the multifractal formalism for measures, the main lines of which are derived in section 5. In
this extension(A, B)-paths are the outcome of a deterministic conservative multiplicative
cascade whose reduction factors are allowed to be negative. As a result, the partition function
encloses information on both their moduli and sign. Circumventing these difficulties, the
(A, B)-paths that are designed here are truly multifractals.

1 E-mail address: huillet@limhp.univ-paris13.fr
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2. Multifractal formalism

Let us first recall some well known facts from multifractal theory. Letbe a Borel
probability measure supported by the interval I The measurew is said to be
discontinuous (or atomic) if it contains atoms, in which case there exists at least one
singletonxg € [0, 1] for which w({xo}) > 0. If it is not discontinuous, it is said to be
continuous (or diffuse). If it is continuous, it can be absolutely continuous if the density
lim,_o+(1/e)u(B:(x)) = p(x) > 0 exists forx € (0,1) and B,(x) := [x —&,x + ¢€];
otherwise it is singular continuous. Moreover, it may have gaps, in which case there is at
least one open sub-intervalc [0, 1], for which u(I) = 0. Mixtures of all these situations
may arise, since each such measure can be (uniquely) decomposed into a purely atomic, a
continuous but singular, and an absolutely continuous part.

In any case, it is first assumed that the distribution functios [0, 1] — F(x) =
w([0, x]) € [0, 1] is a right-continuous, non-decreasing function, and th@®, 1]) = 1.

For anyx € [0, 1], now let

a(x) == lim log, u(B.(x)) (2.2)
e—0+

be the local Hlder exponent ofu at x. If u has gaps, we shall adopt the convention
a(x1) = +oo, for any x; within an open intervall, such thatu(/) = 0. In contrast,
a(xg) = 0 if p is atomic atxg. Let K («) = {x : a(x) = «}, for « > 0, and fy(«) € [0, 1]
be the Hausdorff dimension of the skt(«). The function f(«) is called the Hausdorff
spectrum ofu. It is said thatu is a multifractal measure if the support of the functipn=
{a > 0: f(a) ## 0} contains a continuum af.

Thus a multifractal is a measure. It is finely characterized by the fungfiomhich
gives the Hausdorff dimension of the fractal s&té&x), asa > 0 varies. This function is,
in general, inaccessible in most cases, except for self-similar measures which we shall limit
ourselves to in the following. In this case, the Legendre spectrum also plays a central role.

3. The purely singular case

We first recall the construction of a purely singular measure, without gaps [6].

A continuous self-similar measure can classically be constructed in the following way,
taking advantage of the notion of a multiplicative cascade. Take initially a unit mass
uniformly spread over the interval [@]. At resolutionn = 1, split the unit interval into
m sub-intervals each in the similarity ratip [ = 1,...,m, withr, € (0,1),1 =1, ..., m,
such that) )", r, = 1. Attribute the massy, ! = 1,...,m, uniformly to all such sub-
intervals. Herer; € (0,1), 1 = 1,...,m, satisfying) ;" -, = 1 which expresses the
mass conservation. At resolutian= 2, split each sub-intervdl= 1, ..., m into sub-sub-
intervals, each in the similarity ratio.,/’ =1, ..., m, to the chosen sub-interval of length
r;, and attribute the mass;m7,, !’ = 1,...,m, uniformly to each such sub-sub-interval.
Iterate indefinitely.

In terms of the distribution function, this algorithm starts with the straight line
Fo(x) = x, which connects the point&, 0) and (1,1). At resolutionn = 1, Fi(x) is
an increasing broken line witle pieces. During iteration, the graph &f, becomes more
and more tortuous, while remaining a continuous and strictly increasing path (or bridge)
from A .= (0,0) to B := (1, 1).

The limit result F := lim,_, «, F, is the distribution function of a continuous purely
singular measurg spread over the unit interval.
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In this sense, the following formalism is the thermodynamics of these particular
(A, B)-paths (or bridges).
For (¢, ¢*) € R?, define the levek partition function

Nn
Zy(q,q") ==Y mm)?rm?  Z,0,0) =N, (3.2)
i=1

where(r; (n), r;(n))i=1....n, IS the vector of masses and similarity ratios attached to each of
the N, := m" available chunks at resolution
Clearly, Z, (¢, q*) is defined recursively by
Zn1(q.9") = Z,(q,9)2(q, 97) Zo(g,q") =1 (3.2)

with
mn *
z2(q,q") = anquq .
=1
Next defineF (¢, ¢*) := —log,, z(g, g*). This function is concave and analytic in the plane,

satisfying F(0,0) = —1 andF(0, 1) = F(1,0) = 0.
It follows from (3.1) and (3.2) that for any > 1

—logy Z.(q.9") = F(q.q"). (3.3)
Define now, as in [1], the function(g) implicitly by

i =1 (3.4)

1=1

Alternatively, F (g, —t(g)) = 0. Observe thaf,(q, ¢*) — o if g* < —7(g) and tends to
zero otherwise.

The functiont(g) is concave and analytic on the line, satisfying0) = —1 and
7(1) = 0. Its Legendre transform
fl@) = inf(aq = 7(g) = af (@ — 7(f@) (3.5)

is defined on the Blder rangex € [amin, @mad, With amin:= min1__,,(—logmn;/logr) > 0
and amax ‘= mMax_y, .,
spectrum of the measuge it is non-negative, concave and analytic on this interval, with the
propertiesf (amin) = f(max) = 0 and f’(amin) = f'(@max) = +o0. It attains its maximum
atag = (1/m) Y ;- (logm;/logr;) = 7/(0), and f(xo) = 1. The pointa; := t/(1), for
which a1 = f(ay) is called the information dimension of.

In this context, the functionf(«) is of some importance, since it coincides with
the Hausdorff spectrum of the self-similar measurgust mentioned. In other words,
fa) = fu(e).

More precisely, define the set

—logy, 7i(n)
- IogN” ri(n)
andN,(«, y*) := #B(«, y*) its cardinal. This is the number of atoms whose coarsklét

exponent isx and whose similarity ratio grows IikeN,f’”*(y* > 0). We first learn from
large deviation theory [7, 8] that

lim logy, N, (e, 1) = fur") (37)

B(a, y*) = {i e[N,]: — a, —logy ri(n) — y*} (3.6)
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where f, (y*) := f(ay*, y*) and
fl.yH = inf (yg+vy*q" - F(q.q%).
(q.9*)€R?

The function f, (y*) possesses the following properties [8]. For @an¥ [amin, ¥maxls
it is positive concave as a function ¢f. It takes the maximal value («) := f,(0). The
line passing through the origin which is tangent to fhegraph of f,(y*) has slopef («)
and hits this graph at* := y*(«@). Hence,f («) = fo(y*(@))/y*(a).

Now, for anya € [amin, @maxd held fixed, the contribution to the partition function
Z.(q, q*) by those chunks with this &lder exponenand whose similarity ratio iV, at
resolutionn is from (3.6) and (3.7)

Zo(q, g% o, y") n:OC N’{‘a(y )N;ay INTVT = anH(y )=y (aq+q™)

(the product of their number times theimas$?(volume?’). This contribution will be
maximal for the unique optimal similarity ratigy, satisfying f; (v5,) = (g +¢*) and will

Ja (Vo) —Vop Lo (V3p)
beZl‘l(qa q*;aa y:p) NNI‘L P i P -

If ¢* > —7(q), falvop) — ¥Yopfa(¥sp) < 0: the maximal contribution oB (e, y*) to
Z.(q, g*) tends to zero, together with, (g, g*) itself.

If ¢* < —1(q), fa(¥3p) — Vopfa(vgp) > 0: the maximal contribution oB(«, y*) to
Z.(q, q*) tends to infinity, together wittz,, (¢, ¢*) itself.

If ¢* = —7t(q), falvop) — Yopfa(¥sy) < 0: the maximal contribution oB (e, y*) to
Z.(q,q™*) also tends to zero, unlegs= f'(x). Here,yg, = y* (@) and

Fo V) = Vo (i) = fu " (@) — y* @) (@f (@) — T(f'(@)))

which is, from the above analysi¢,(@)y*(«) — y*(«) f(a) = 0. In this case only, the
maximal contribution ofB(«a, y*) to Z,(q, ¢*) is one: the seB(«a, y*(«)) carries all the
information Z,(q, —t(q)) = 1. The atoms of thex-similarity ratio r,(a) = N, ©
therefore carry all the information and we get from (3.7)

1im 10g;, ) Na(t, (@) = /(@) (3.8)

which is consistent with the definition of a Hausdorff dimension in our situation.

Remark 1.0bserve now that another functieii(¢*) could be defined by (—t*(¢*), ¢*) =
0, with the same properties as[9-11]. Clearly—t*(—t(q)) = ¢ and —t(—1t*(¢*)) =
g*. These functions are the inverses of one another. As a result, leftiag*) =
inf -er(a*g™ — t*(g*)) be the Legendre transform of, it is well known that f*(e*) =
o* f(1/a*) and conversely thaf (o) = af*(1/a). The function f*(«*) is the Legendre
spectrum of the measuye* obtained while reversing the roles played @y, r;);—1 [
the above construction gf. The measureg and u* are said to be reciprocal.

.....

Remark 2. Various extensions and ‘anomalies’ of this basic model have been proposed
recently in the literature about multifractals:

e the infinite base casen = oo, leading to the notion of a left-hand sided Legendre
spectrum [4,12,13];

e a randomization procedure ofz;, r;)=1...
distributed but not independent variables on the intervallJ@as a result of exact mass
and volume conservatiop , IT; = 1 and ), R, = 1), leading to the notion of random
multifractals, for which negative (‘latent’Y («) are observed and interpreted [14—16];
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e a randomization procedure 0t;, r;);=1.. .., as identically distributed and independent
on the positive real line (in particular, log-normal) but satisfying the weaker average
constraint: E(}_, 1)) = E(}_, R)) = 1, leading to the notion of random multifractals,
for which ‘virtual’ negativexa are observed [17];

¢ the ‘skewed’ multifractals extension when each fragment splits at various resolutions
[18, 19].

4. Mixture of an absolutely continuous measure with a singular continuous measure

First we now construct a continuous self-similar measure which preséntdtaneously
singular and absolutely continuous parts. Brogtral [20] have introduced a formalism
similar to the one which is discussed in this section. In order to avoid confusion with the
purely singular self-similar measures of the previous section, we shall call these measures
self-similar ‘with condensation’.

Take initially a unit mass uniformly spread over the intervalllpD At resolutionn = 1,
split the unit interval inton sub-intervals as before.

Suppose there are ndwo types of sub-intervals. First, the ‘sterile’ ones 1,...,d <
m — 1 each in the similarity ratio; _,/ = 1,...,d, withr,_ € (0,1),! = 1,...,d
such that}? ,r,_ := r_ < 1. Attribute the massy,_ € (0,1),/ = 1,...,d, with
Z;’Zl .~ = m_ < 1, uniformly to each such sterile sub-interval. These sub-intervals are
sterile in the sense that they will no longer split in any subsequent step.

The second type of sub-intervals are ‘productive’, each in the similarity ratioe
O, l=d+1....mwith) ) . ry:=r.=1—r_. Therearethup :=m—d > 1
such sub-intervals. Attribute the mags; € (0,1),/ =d +1,...,m, uniformly to each
such productive sub-interval. Suppdsy’,, .+ := 7y = 1—n_. Itis then assumed that
the mass and volume conservations hold, globally. At resolutien2, split each productive
sub-intervall =d + 1, ..., m leaving the sterile ones unaffected. Upon indefinite iteration,
we are also left with a singular measytespread over the unit interval. However, in the
limit, macroscopic masses remain supported by macroscopic volumes and co-exist with the
singular part of the distribution, each corresponding to a specific thermodynamical regime
(condensed and diluted, respectively). We now derive these two formalisms adapted to each
situation.

4.1. Singular part ofx

For (¢, g*) € R?, define as before the levelpartition function

N,
Zu(q,q") =Y _mi(n)ri(n)?
i=1

where(m; (n), r;i(n));=1,..n, IS the vector of masses and similarity ratios attached to each of
the N,, available chunks at resolution
Clearly, Z, (¢, g*) is now defined recursively by

Zni1(q.9") =2-(q.9") + Z,(q.9")z+(q. q") Zo(g,q") =1 (4.1)
with

d m
. q 49" . q 4"
2-(q.q") =) wl_rf_ and  zy(g.9") = ) 7l
=1 I=d+1
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Observe from (4.1) thaZ, (0, 0) := N, satisfies
Nyi1=d+ N,b No=1.

Next define formally the generating functidi(s, ¢, ¢*) ‘= }_,.0b"Z.(q,q"). It
follows from (4.1) that

1-b0°1—-2z2-(q,9")
A-b)1—-b21(q,q%)

provideds < F(g, ¢*) := min(0, F1(q, ¢*)), with Fy(q,¢*) := —log, z1(gq, ¢*), and is
undefined otherwise.

We shall letD := {(¢, ¢*) € R?: F,(q,q*) < 0}, and D¢ be its complement ifR?.

Now, the functionF, is concave and analytic in the plane, satisfyig(0, 0) = —1,
F1(0,1) = —log,ry > 0andF,(1,0) = —log, my > O.

The function F also is concave but only continuous, and this is the signature of a
phase transitiorbetween the diluted (when the scaling expon€nts;*) belong toD) and
condensed phases (whép ¢*) € D°) [11, 18, 21].

It follows from (4.2) that

nleoo —logy Z.(q.q9") = F(q.q") (4.3)

Z(s,q,q9") = (4.2)

generalizing (3.3).
Now define now the function (q) implicitly by

Fi(q,—t(q)) =0. (4.4)

To make the analogy of this definition of the ‘structure functiarig) with those
available in related papers more transparent, it is equivalently defined by

—1(q) _
Z 7Tl +I+

I=d+1

This is the equation of the critical line separatibgand D°.

This functiont : R — R is concave and analytic, with® 7(0) > —1 andt(¢;) =0
whereg, € (0,1) is the unique real number defined By;" ., nﬁjr = 1. Observe that
7(0) is uniquely determined by} ., ¥ = 1 in a similar way.

The Legendre transfornf («) := inf,cr(eg — t(g)) is defined on the Blder range
o € [omin, dmax, With amin = Min_gy 1. (—logm / —logr ;) > 0 and amax =
MaX—g+1,...m(—l0gm +/ —logr;+) > 0. This function is called the Legendre spectrum of
the singular part of measuge. The function f (@) is non-negative, concave and analytic
on this interval, with f (@min) = f(@max) = 0 and f’(amin) = f'(amay) = +oo. It attains
its maximum atoo := (1/b) >)",,,(logm; 4 /logr; 1), and f (o) = —7(0) < 1, showing
that macroscopic masses remain supported by macroscopic volumes.

At the pointa; = t'(gy) < @o, f(@1) = g4+t'(gy). This number is called the
information dimension of the singular part af

In this context, the functiorf («) coincides with the Hausdorff spectrum of the singular
part of the self-similar measune just constructed, which means thatx) = fu(«). (The
proof of this assertion can, for example, be found while readily adapting [10, theorem 16,
p 13], which itself is based on [22] concerning random multifractals; the main source of
the difficulty here is tha ;" ,., 7, < 1, which may be circumvented, with additional

complexities to overcome, while performing the substitution. — ;1 (¢) := 7' r;_ 1
for which now>"" | m 4(¢) = 1.)
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An interpretation of this function, which follows step by step that given at the end of
section 3, can easily be derived.
We now come to the thermodynamics, of the regular payt.of

4.2. Regular part ofx

First note that really equation (4.3) is only meaningful fgr¢*) € D.
If (g, q*) € D lim, o — logy, Z.(q,q*) = O still holds but we have a more interesting
limit result,
lim —logZ,(q,q*) = — Iog(sirg_(l —b")Z(s,q,9") = Fx(q,q")

n—oo

with Fx(q,q") = —log(z-(q,q*)/(1 — z4+(q, g*))), from the initial-value theorem of
Laplace. Thus, concerning the regular (that is absolutely continuous) part of the measure
u, we observe that the partition function convergeshify which is the condensed phase
region.

Next definet,,(¢) by

Foo(q» _Too(Q)) =0
hence

Zn, 0+ Y =1 (4.5)
I=d+1

is its defining equation (observe the analogy with (3.4)). The graphxf is entirely
included within D®; indeed,—1,,(0) = 1 and—1,(1) = 0 so that two points of its graph
are at least withinD®. If now —t,, and —t were to intersect, there should exist a point,
say qo, for which —7,(q0) = —7(q0). However, from the equatioy ", , 7/, r, f‘“ 1
definingt(¢) and the one defining,,(¢), such aqo should satisfy

i 71 (’"1 7(q0) __ —roo(qo)) 0= ano rm(qo)

I=d+1
which is impossible, except maybe feog,(go) = +oo and hence agg = +oo. We shall
then call

foo(@) == inf(ag — 10(q)) (4.6)
geR

the Holder spectrum of the regular part af
These facts deserve some explanation.

4.2.1. A Gibbs analysis of the regular part pf Write the partition functionZ,, as
Zoo(q. q*) 1= Y 5, €100 with x1(i) == —logu(i) andx2(i) := —logr(i) the
logarithms of mass and similarity ratios of the observable macroscopic atoms constituting
the regular part oft (microscopic chunks contribute to nothing in this sum while the scaling
exponentdg, ¢*) vary in D).

Assume now that the exact distribution@f (i), x2(i));>1 iS unknown to some observer
so that these values are assumed to be the realization of some random(¥ecfo). We
shall then search for a ‘probability’ measure of the evexit = x1(i), X2 = x2(i)), say
P(X1 = x1(i), X2 = x2(0)) := P(x1(i), x2(i)), which maximizes the Shannon entropy
[23, 24]:

S(P) ==Y P(x(i), x2(i)) log P(x1(i), x2(i)) 4.7)

i>1
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under the constraints
Y P, xa(i) = 1 (4.8)
i>1
Y @ P ), x2(i) =y = (X1)
izl
and
Y %) P(xa(i), x2() = ¥ = (X2)
izl

fixing the theoretical averages, y*) of (X1, X») under the probability distributiod.
Performing this standard optimization program using Lagrange multipliers yields the
Gibbs distribution

e 9x1()—g"x2(0)

e o < . c .
Py 4 (x1(), x2(1)) AT OR i>1(,9g)eD (4.9
with (¢, ¢*) and (y = (X1), y* = (X2)) related by
0, F(q.q") =y and 0 Foolg. q") = ™. (4.10)

Thus, a natural model for the probability to obselwe(i), x2(i)) is the ‘exponential’
Gibbs family (4.9), as a function of the ‘external’ control parameters;*) € D¢, related
to the theoretical averagésg, y*) of the distribution as just mentioned.

Thus, the more visible the object is, through thimt informationmass?volume?”, the
larger the probability of this observation will be.

This actually is one of the postulates of statistical physics. Statistics is then concerned
with the problem of identifying the value af, ¢*) which fits the observation sample the
best.

4.2.2. The maximum likelihood estimator of the scaling exponeite shall recall how to
construct a maximum likelihood estimator @f, ¢*).

The log-Laplace transforni,, (g, g*) is concave on the convex séX. Its Legendre
transform

Sty,y") = inf (yg+y*q¢" — Fx(q.q%)) (4.11)
(g,q*)eD°

is well defined, non-negative and concave on the convex hulk@f), x2(i));>1.
Moreover,S(y, y*) = y9,S + y*9,+S — F (9, S, 9,-5), with

(X1), (X2) = (v, ¥").

Conversely, the control parametsgg, ¢*) can be derived fron{y, y*) by ¢ = 9, S and
g* = 93,+S. The distributionP, . is thus well parametrized bgy, y*), through
9, S.x1(i)—9,* S.x2(i)

P, - ] 1)) = > 1. 4.12
() (X1(0), x2(0)) 70,5.3,.5) i (4.12)
Note also thatS(y,y*) = S(F,,+) is the Shannon entropy [25] evaluated at
P:P(V-V*): o ]
A maximum likelihood estimator of(q,¢*), say (Q, 0*), can therefore be
derived from an estimatotI’, I'*) of the theoretical averageg/, y*) by (Q, 0*) =
(3, (T, T*), 8, S(T", T*)).
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Now let (X1(k), X2(k))¥_be an independenk-sample of the random variables
(X1, X2). Introducing the likelihood (i.e. the probability of th&-sample), V(, ,« =
HleP(y,y*)(Xl(k),Xz(k)), and searching for the value dfy, y*) maximizing this
likelihood, we get

o 1 K o 1 K
XuK)y=2> Xy and  Xo(K) == > Xo(k).
k=1 k=1

The empirical averages are thus unbiased, efficient estimatays, pf), in the sense that
the expectation and variance—covariance uriggr, -, are

_ — — — 1
(X1(K)), (X2(K))) = (v, v*) and 2[X1<K>,X2<K>]=—EH—1(y,y*>.

The quantity— K H(y, y*) is the Fisher information matrix of th& -sample, withH the
Hessian matrix ofS(y, y*).
We also have the law of large numbers

(X1(K), X2(K) — (7,77 (4.13)
with P, ,+-probability one, and the central limit theorem
Jm Py (STHAXUK) —y Xo(K) —y9)) Sy =erfy) (4.14)

together with its large deviation counterpart [26]
1 — _
Ve log Py, (X1(K) = Yo, X2(K) — ) Kjoo—K(P(yo,yg) | Pyy)- (4.15)

Here (yo, yg) are the observed empirical averages and
Py, ey (x1(D), x2())

K(RV&VJ) ” 13(}”1’*)) = ZRVD*VJ)(xl(i)? x2(l)) lOQ

i>1 Py ) (xa (i), x2(0)
is the Kullback non-negative information gain betwep, ,.) and P, ,+ . As a result,
K(Pyys) | Poyyy) = S0 v™) = SWo, ) — (¥ = Yo, ¥ — ¥)VS(y, v™). (4.16)

4.2.3. A large deviation result. Now we come to the main result of this section. We

try to evaluate the (small) probability that the empirical averages Kfsample converge

like X1(K)/X2(K) — « andX2(K) — y;, under the Gibbs probability, , -, fixing the

theoretical averagesX;)/(X,) = a and (X,) = y*. It follows from (4.15) that

1 X1(K _
P, (72[{; — o, X2(K) — y;) = K (Playsrp) || Py ) < 0. (4.17)

So doing, the ratio of theoretical averagé¥:)/(X,) = « is held fixed. Here
X1(K)/X»(K) denotes the ratio of the empirical averages of the logarithm of mass and
the logarithm of volume.

Now the functionS(ay*, y*) is non-negative and non-decreasing. The line passing
through the origin which is tangent to thé-graph ofS(«y*, y*) has slopé,-S(ay*, y*) =
feo(a) defined by (4.6) and hits this graph at* = y*(«). Hence, foo(e) =
S(ay™, vy /y* ().

It follows from (4.16) and (4.17) that, at* = y*(«),

1 X1(K _
—~ log Pa,y*(a)<% — a, X2(K) > y;> T S@rgv) — ve fol@) SO (4.18)

This rate function has nexplicit dependence on the theoretical averade= y*(«)
and this choice of* = y*(«) is the unique way to realize this.

K
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4.2.4. Concluding remarks.As a conclusion, the condensed phase, where the partition
function itself converges, deserves its own thermodynamics. It certainly has been unduly
neglected in the literature concerning multifractals. Its outlines have been drawn in this
section, taking advantage of the Gibbs framework of maximum likelihood estimation.

We now come to the related construction and questions of a singular measure presenting
atoms and gaps.

4.3. Atoms:r,,,,.— = 0 andn,;, - > 0

AS rmax— = MaX=1, 47— — 0, while mmin - = min=y

intervals shrink to become points to which non-null sub-masses are affected. Mgasilire
present atoms in the thermodynamic limit> oco. In this contexty;, - =0,/ =1,...,d,;
hence,y /. ,.,r,+ = 1 now expresses the volume conservation. As a res(, = —1,
in the previous construction. In contrast, the numipérstill remains in the open interval
(0,1). The formulae (4.1)—(4.4) only make sense §ér> 0, in which case;_(g, ¢*) = 0,
as a result of 0 = 0. The functionZ(s, ¢, ¢*) defined in (4.2) becomes

1
%
Z(s,q,q9") 1 b a) (4.19)
asqg* > 0 ands < F(q,q*) :=min(0, F.(q, g%)). It diverges elsewhere.

Observe thatz,(q,q*) = i1 ”ﬁﬁﬁl is now subject to the constraint
Ytaiir+ = 1. Under this additional constraint, the functieiiy) remains implicitly
defined byF, (¢, —t(q)) = 0, as in (4.4).

To take the atoms into account, the partition function (4.1) has to be replaced by its
‘grid’ version where ‘space’ is cut into equal pieces of length” (see [9, p 56] for a
similar account)

Wy
Z%(q,q*) = Zn’an_”q*.
i=1

In this formula, ;, is the mass attributed to thi#h sub-interval of lengthm/ =" at
resolutionn. This results from the fact that the solution of (4.1) appears ‘blind’ to the
atoms for whichz_(q, ¢*) = 0.

If now z,,,(g) denotes the solution to

Z8(q, —tan(@) =1
we obtain, lettingr,(¢) = lim,_ o .., (q),

Mﬂ
T4(q) = lim logy . Y 7/,
n—oo i1 ’
In other words, the function(g), defined byF, (¢, —t(g)) = 0, has to be replaced by
its ‘atomic’ grid version
7.(q) = t(q) if 7(q) <0 zero elsewhere (4.20)

with 7,(0) = —1 andt,(g") =0for 0 < ¢ < 1.

Define as before the Legendre transfofitw) = inf,er (g — 7(g)) for this particular
7. It has the standard bell-shape, but its maximum is rew(0) = 1. The Hausdorff
spectrum of measurg, with atoms, is now

fu(@) = f(@) -1 (>0 +0-1(x =0) (4.21)
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adding the point(0, 0) to the graph off(«): this reflects the fact that atoms are points
where Hlder exponents are zero and that they form a set of (Lebesgue) measure zero.
Concerning the Legendre spectrum of meagurevith atoms, it is

fa(@) = inf(ag — 1,(q)). (4.22)
geR

It has the form of the top and right portions of the previous graphfipfdown to
(a1, fu(a1)), combined with a straight line joining this point to the poi{ft 0). Thus, for
a singular measurg with atoms fyy # f, [9].

4.4. Gaps:myax,— = 0 andry,— >0

AS Tmax— = Mmax—1.. 47, - — 0, the sterile sub-intervals, supported by non-null volumes
this time, will receive no mass. Measuytewill presentgaps. As;_ =0,/ =1,...,d, one
getsq™ =1, sinced " , ., m + = 1 is the new equation of mass conservation. However,
0> 7(0) > —1. The above construction (4.1)—(4.4) only makes sensg for0, in which
casez_(q,q*) = 0. The functionZ(s, ¢, ¢*) defined in (4.2) only makes sense in the
restricted domairy > 0 ands < F(q,gq*). The version of the function(¢) defined by
(4.4) with gaps is then

19(q) == 1(q) ifg>0 zero otherwise (4.23)

with 0 > 74(0) > —1 andryg(1) = 1.

Define as before the Legendre transfofitw) := inf,cr (g — 7(g)) for this particular
7. It has the standard bell-shape, with its maximum-at{0) < 1, expressing the fact that
gaps are present. The Hausdorff spectrum of measuwith atoms, is now

fr@) = f@)--1(@<o0)+1-1(a=00) (4.24)
adding the pointlco, 1) to the graph off(«). This reflects the fact that gaps are points

where Hlder exponents are infinite and are of positive (Lebesgue) measure.
Concerning the Legendre spectrum of measurevith gaps it is

Jol@) == ;2{{(“4 — 19(9))- (4.25)

It has the form of the convex hull ofy(x): only the left-hand side of the graph
of fy remains identical, up to the poinixg, —7(0)), where f attains its maximum,
fru(ag) = —1(0) < 1, combined with a straight line joining this point to poi@to, 1).
Thus, for a singular measuye with gaps fi # f4 [9].

Remark 3.Starting fromz,(¢), as defined by (4.20), observe that another functip@™)
could be defined by

-7, (%) = ¢ and —t(—7,(q")) =q".
These functions are the inverses of one another. The grapti of of the type ty' of

some singular measure with gaps. As a result, a measuvith atoms admits a reciprocal
measurew® with gaps (and conversely), which is consistent with intuition.

Remark 4.Atoms, gaps and regular fragments may co-exist in the limit multifractal measure
w. To see this, partition the set of sterile indices := {1,...,d} into three mutually
disjoint sets(L®, L%, L") such thatL._ = L® UL UL". These sets are defined by the
following properties

(- =0, > 02 (- > 0,1 - = 0)jera (- >0, > Q)jerr .
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The version with atom gaps of the functietig) defined by (4.4) is then

Tag(q) == 1(q) if g >0andr(g) <0 zero otherwise

5. Towards more general self-similar bridges

5.1. Geometrical construction of self-similar bridges

The above constructions can be extended in the following way: as was underlined in
the beginning of section 2, an equivalent way to look at the multifractal formalism of a
probability measure on [@] is in terms of the distribution function at leve| say F,,, the
graph of which is a path (or bridge) connectidg:= (0, 0) and B := (1,1). This path
becomes very irregular as resolutiartends to infinity. However, in this contex;,, and
its limit, F, asn — oo, was restricted to be a non-decreasing function gperhaps with
gaps or jumps), which is a very particular way to joinand B. More general self-similar
bridges fromA to B can be constructed in the following way: initially, the connecting path
looks like a straight line joiningd and B.

At resolutionn = 1, define recursivelyr points in the plane by

X]ZX[_j_-l—A[ l:l,...,m X():A XW,:B

with A; := (m;, ;) wheres; andr; are now non-null real numbers, standing respectively
for the ordinate and abscissa of the increments. The conditipe A, X,, = B translates
into> ., m =1and) ) ,, = 1. Draw a line joiningX;_; to X;,,/ = 1,...,m. This
defines thg A, B)-path at resolutiom = 1 as a continuous broken line mademfpieces.
Suppose there are now two types of suckublines: the ‘sterile’ oneks=1,...,d <m—1
whose increments will be specified to be _ := (7, _,r,_) e R —{0,0},1 = 1,....d,
such that}¥ 7w = n. € R— {0} and >\ ,r,_ = r_ € R — {0}. These
increments are sterile in the sense that the line joiriag, to X; will remain unchanged

in any subsequent step X; — X;-1 = A;_ is a sterile increment. Concerning the
b := m —d > 1 remaining ‘productive’ ones, their increments will be specified to be
Ay =0T 4,114) € R2—{0,0},l =d+1,...,m, so thatZ;":dJFImHr =n,=1-n_€eR
and) ) ..+ =ry = 1-r_ € R. For each such productive increment, define recursively
m points in the plane by

XI’]rZXl'[/,l—i-AfiJr l’:l,...,m XLOZX],]_ Xl,m :Xl

with Aé/_,'_ = (7[1,+T[[/, rl.+r1r).

The (A, B)-path at resolutiom = 2 is obtained while drawing a line joining; ;1 to
X, ' =1,...,m, as soon as is such thatX; — X,_1 = A, , is a productive increment,
leaving the sterile pieces unaffected. Upon indefinite iteration, we are also left with a
singular self-similarA, B)-path in dimensiork = 2, the thermodynamic of which will be
our objective.

We shall distinguish two cases depending on the modulus of the increments.

The confined caseHere ;| < 1 and|r;| <1 foralll =1,...,m, in which case the
(A, B)-path is forced to stay within some bounded set as we now briefly show.

We shall prove this on the abscissa of the path, a similar argument holding for the
ordinate. It is indeed possible to give a recurrent algorithm which yields, at resolution
their maximal, sayXi max(n), and minimal, sayX1 min(n), abscissa: indeed, at resolution
n—1, X1 min(n —1) and X1 max(n — 1) yield m local minima and maxima at step depending
on the signs of;,/ =1, ..., m. These have to be compared in order to extract the desired
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values at step. This results from self-similarity. The obtained recurrence is

-1
Xl max(1) = Tax (Zrk + ”I(Xl,max(” - 1)1(r1>0) + Xl,min(n - 1)1(r1<0)))
=1,..., m —

-1
X1min(n) = T'n <Zrk +71(X1min(m — D1gm0) + Ximax(n — 1)1(/1<0)))

..... Pt
Moreover, 1< X1 max(n) and 0= X1 min(n).

Assuming|r;| < 1 foralll =1,...,m yields a convergent algorithm. Indeed, indexing
with a ‘4’ the ¢ values of the index, say/, ..., l;, associated with a positive value of

r; and with a —' the m — ¢ remaining ones, the above recurrent equations yield the finite
value Xl,max = Iimn—>oo Xl.max(”)

- -1 -1
I 71 ; -1 j j
Zk 1 ¢ Zk 1 Tk 2 ie1 e + 11 Do Tk
Xl’max: maX g 7‘ -{—}”l N - .
Jj'=1,...m—q 1-— I+ — rl+ 1- r-r-
j=1,...m—q ! oty
i=1,...q

ConcerningX 1, min := liM,— s X1.min(n), it is the minimum over the same set of indices
of the same values.

Thus, the(A, B)-path abscissa remains in the finite interval fnin, X1.mad- 1IN @
similar way, its ordinate remains in the finite intervas[min, X2max Substituting
to r, in the above expressions, so that thé, B)-path remains as a whole within
[Xl,mina Xl,max] X [X2,min, X2,max]-

The unconfined casédere|n; .| > 1 or|r 4| > 1 for somel =d+1,...,m, in which
case thg(A, B)-path is not confined within any bounded region of the plane: ‘giant’ (i.e.
singularly large) pieces will co-exist with ‘tiny’ (i.e. singularly small) and ‘regular’ pieces
in the (A, B)-path. The prospective study of this case that follows will concentrate on the
analysis of the sequence of curves generated as resolution increases.

Remark 5. These(A, B)-paths are fractal lines joiningt and B, just like a Von Koch
curve (for example) is one, but a Von Koch curve is only a monofractal wbéinot be

generated this way: an appeal to a geometrical representatisubsfitutionsis necessary
[27,28].

Remark 6.These constructions can easily be extended to any Euclidean diménsion

Remark 7. Jumps along the abscissa, ordinate and regular sublines may co-exist in the
limit (A, B)-path. To do this, partition the set of sterile indices = {1,...,d} into

three mutually disjoint set$Lt, L2, L%) such thatL_ = L* U L2 U L%. These sets

are defined by the properti€sr;, _| = 0, |r;,_| > 0);cz2, (Jm—| > 0, |r,—| = 0);;2 and

(I, = > O, |r;,—| > 0),z3, therefore allowing(sr; —, ;) to take the value zero in some
places.

Remark 8.1f (r1);=1.... » € R —{0} in the above construction, an

(A, B)-path is still the distribution function of some signed real-valued Borel measure
wu supported by the interval [@]. The distribution functionx € [0,1] — F(x) =

1([0, x]) € R is only right-continuous withu. ([0, 1]) = 1, but remains self-similar. We
thus relaxed the conditions thatis [0, 1]-valued and tha# (x) should be non-decreasing,
while maintaining the other constraints: this represents, for example, the distribution of a
unit chargeon the unit interval [01].
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Thus, self-affine functions are special cases of bridges as introduced in this section. They
have also been studied widely, especially from a multifractal point of view by Jaffard [29],
who showed that, in general, the multifractal formalism for functions only yields an upper
bound for the singularity spectrum, whereas it is exact for self-similar ones (with a definition
of ‘self-similarity’ which does not exactly fit with ours (see our conclusion in section 6)).
Also, Falconer and O’Neil [30] have taken into account vector-valued multifractal measures,
a special case of which are the self-affine functions just mentioned.

If (m)i=1...m € (0,1) while (r;);=1....» € R — {0} in the above construction, an
(A, B)-path represents a physical phenomenon where a volume contraction is permitted
while adding mass (or even chargerif < 0 for somel) within the system.

5.2. Statistics of th¢A, B)-path trail

5.2.1. Partition function analysis.We now come to the extension of the thermodynamic
formalism to such(A, B)-paths, which amounts to the parametrization of the abscissa
of the (A, B)-path by its ordinate (a reciprocal problem would of course consist in a
parametrization of the ordinate by the abscissa).

Let ;o = |m 4| ™0@s) | = 1. ., m, be the modulus—phase representation of
T 4, with b[(ﬂl’i) = 0 if T4+ > 0, and b[(ﬂl,i) =1if T < 0, Controlling the
sign of m o = (m . m). (Note thath(m ) = 3(1 — sign(m,+)).) In a similar
way, letr,+ = |r.|e ™) | = 1 ... m, be the modulus—phase representation of

rrx =y, r-).
For (g :=(q1,92), " = (g7, 43)) € R4, define the extended levelpartition function

N)l
Z,(q, q") =) _ Im ()| e T ()| e P 7,(0,0) = N, (5.1)
i=1
where(|r; (n)|, b(r; (n)); [ri(n)], b(r;(n)))i=1....n, IS the vector of increments’ representation
attached to each of th¥, available(A, B)-path pieces at resolution
FunctionZ,(q, q*) is now defined recursively by

Zni1(q, @) =2-(q,.9") + Z,(q, 4")z+(q, q") Zo(qg.q") =1 (5.2)
with
d
7-.(q, q%) = Z |nl’_|ql e—f/zb/(m.f)|rly_|qf e 43bi(r-)
=1
and

m

z:(q, ¢") = Z |77y 4| e*qzbz(m.+)|rl’+|qi‘ e B
l=d+1
Next define the generating functidfy(s, q, g*) := Zn>0 b*"Z,(q, g"). It follows from
(5.2) that
S *
26.q.q") = oG (d ) (5:3)
QA-5)1-b'24(q.9)
provideds < F(q, g*) := min(0, F.(q, g*)), with F.(q, ¢*) := —log, z+(q, ¢*), and is
undefined otherwise.
The functionF, : R* — R is concave and analytic, satisfying,(0,0) = —1. The
function F is also concave but only continuous, and this is the signaturgpbésae transition
while crossing the critical domaini(q, q*) € R*: F,(q, ¢*) = 0}.
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It now follows from (5.3) that
lim —logy, Z,(q.q") = F(q.q"). (5.4)

Depending on whether one is in a confined or unconfined situation, the analysis may
vary.

5.2.2. The confined caseSuppose first that théA, B)-path is confined. We wish here to
derive the thermodynamics of the modulus—phase information on the abscissa against the
modulus-phase information on the ordinate (see the definitions of theSgets/*) and

Sy (a5 y*), later).

The critical domain equations. Define then the two functions(q) = (11(q), 12(q))
implicitly by

Fi(q.(-11(9),0) =0 (5.5)
and

Fi(q, (0, —72(q))) = 0. (5.6)

These functions are particular cuts (q) := 7i(q, 0), 12(q) = T2(0, q)) of the two
functions(71(q, ¢3), T2(¢7, q)) defined respectively by

Fi(q,(-71(q,95),95)) =0 and Fi(q, (¢5. —T2(q5. @) = 0.

The equationg; = T1(q, ¢3) andgs = T»(q;, @) are two alternative descriptions of the
critical domain{(q, g*) € R*: F,(q, ¢*) = 0}.

Each deserves a particular study.

e Concerning the function; : R? — R, it is concave and analytic, and is defined
by YL g || e b @)y, [ |T@ = 1. At ¢ = 0, it takes the valuery(0) defined
uniquely by >~ ;.1 1r4+17™@ =1, with 7(0) < —1 if and only if }°)" ;. [rr 4| > 1.

e Concerning the function,, implicitly defined by

m
Z |7t +|£11 e—Qth(n1,+) e’“‘””’“’«” -1
I=d+1

we have

24-(q1) +z__(q1) €% )
T =—lo
2@ J (1 ~ (@1 @) + 21 (qn e )
where(z44, 24—, z_4+, z__) are defined by
24(q,(0,¢3) =241 (q1) + 24 (q €2 + 7, (q) e P +7__(q1)e e

upon specifying the joint positiveness (or not)@f -+, 7/ +)i=d+1.....
Hence, the function; is concave and analytic, on the convex domain defined by

{(q1,42) € R?: (z——(q) + z4-(q) €%) < 1)
not including zero.

The Legendre transforms ofi(q), t2(g). Define next their Legendre transforms
(fi(a), f2(e)) with

file) = qigﬂgz((ot, q) — 1(q) (6.7)

fa(@) = qigﬂgz((a/, q) — 12(q)). (5.8)
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We are then led to the idea that a bispectrum should be meaningful when parametrizing
the abscissa of a self-simil@A, B)-path by its ordinate: this is a result of the reduction
factors being allowed to be negative, and hence encoded by both their moduli and signs.

Concerning the Legendre transformfi(«), its dual system of Legendre variables
a = (o1, ap) is defined on its (bounded) dtdler range which is the polygonal convex
hull, say H, of the points(—log|n; 1|/ —log|r; |, b(m, 1)/ —10G 171 4 Ni=d+1....m-

Concerning the Legendre transfor(a’), its dual system of Legendre variables
o 1= (o, ay) is defined on its (unbounded)dttier range which is the polygonal convex
hull, say H’, of the points(—log|m; +|/b(r1.+), b(w; +) /b +))i=d+1....m- This domain is
included in the unbounded domain [mir log |7 +|/b(r;.+)), 00] X [0, oo], upon projecting.

We shall call these functions the Legendre spectra of the self-sitdilaB)-path: each
is non-negative, concave and analytic on its definition domain. Fungtjoattains its
maximum atag = (a1, a20) Which is the centre of gravity of the extremal points of
H. Moreover, fi1(ag) = —11(0). Concerning the functioryf,, the centre of gravity of the
extremal points offl’, sayog := (o) o, &5 ), IS rejected at infinity.

The functions f1(«), f2(«)) are identified with the Hausdorff spectra of the self-similar
(A, B)-paths just constructed. We now come to the interpretation of these functions.

The thermodynamical interpretatiolefine the sefS;(«;y*) by
—log|m; (n)| b(r;(n))

— % al’ —
—log|ri(n)| —log|ri(n)]
and letNY(a; y*) = #{S1(e; y*)} be the cardinal of this set. It is the number of atoms

whose first Hlder exponent isx and for which |r;(n)| ~ Nn_y*(y* > 0).
In a similar way, define the seb(a’; v*) by

—loglmim| b)) b)) }
b(r;(n)) Y b(ri(n)) Z log N,

{i e [N,]: — ag; —logy, |ri(n)| — V*}

{i e [N,]:

and N,f(a’; y*) 1= #{S(a’; y*)} its cardinal. It is the number of atoms whose second
Holder exponent isx’ and for which b(r;(n)) ~ log N,i’*. We learn from large deviation
theory that

lim logy, N(e: y™) = f3(r") (5.9)
lim logy, Ni(@' y*) = fi (/") (5.10)
where f1(y*) (respectively, faz,(y*)) is thea-cut (respectivelyg’-cut):
[y = fHoay® ay™, y*)  (respectively fZ2(y*) = f2(ayy*, azr*, v")
with

fon, v, v = inf_(y,q) — F(q, (¢, 0)))
(q.9%)€R3

(reSDECtively 2, y2, v = inf_(y,q) — F(q. O, qé")))>.
(q.g")€R®

The function £1(y*) possesses the following properties. For ang H, it is positive
concave as a function of*. It takes the maximal value () := £1(0, 0). There exists a
unique line passing through the origin which is tangent tothgraph of £1(y*) and whose
slope is fi(«). This line hits this graph at* := y;"(«). Hence, fi(a) = fl}(yl*(oz))/yl*(oz).
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Defining r}(a) = N, @

lim 10Gy 1) Ny (e ¥4 (@) = fa(@). (5.11)

, we get as in section 3

Working in a similar way onf2(y*), we get withr2(a’) := N, 72 and fo(e) =
fers@)N/ys @)

lim 10y 20, Ny (@s 3 (@) = fa(@). (5.12)

Concluding remarks. In this first extension, confinedA, B)-paths are the outcome of

a deterministic conservative multiplicative cascade whose reduction factors are allowed
to be negative, but less than one in modulus. As a result, the partition function should
enclose information on both their moduli and signs: an immediate analysis extending that
of multifractal measures holds.

5.2.3. The unconfined caseSuppose now that theA, B)-path is unconfined. We shall
limit ourselves to the particular cas@nax+| := MaX—gt1,_m |11+ > 1 and |rmin+| ==
MiN—g+1..mlr+] <1, while |, 4| < 1,1 =d+1,...,m (a complete study of all the
situations that can arise is left to a future work).

As was noted previously, giant fragments co-exist with tiny ones in(theB)-path,
and one expects the previous analysis to change in a drastic way. This is what happens,
and it affects the function;.

Equation (5.5) that defines the functientakes the equivalent form

2+(q, (—1(@), 0) =1

with 2,.(q. 1) '= z+(q. (g7, 0)) = 2L g Iy 4| €20 |y |0
This function, as a function of;, is now such that. (q, ¢;) 2, too asa result
g1 —>=T00

Of [rmax+| > 1 and|rmin+| < 1. It now has a unique absolute minimuii(g) defined by

34:2+(q, 91(@)) = 0.

Moreover,z(q, g5 (q)) > 0. Thus equation (5.5) now has none, one or two solutions,
depending on whether, (g, ¢5(q)) > 1, =1, or <1, respectively: the unique solution now
bifurcatesinto two solutions.

Supposez; (g, g5(q)) < 1, so that equation (5.5) has two solutions there. This defines
a convex domain, sa¢, in the g-plane, not includingg = 0. In this domain, we let] (q),
r{(q) denote these two solutions, with of course

(@) = 11(q) if g€dC:={qgeR?: z,(q,9i(q) =1}

which shows that the two solutions merge at the boundahof the domainC. Moreover,
IV (q)] — +oo asq approachesC.

The functionz;(g) : C — R is monotone increasing and concave whilég) : C — R
is monotone decreasing and convex. The functigy) is representative of the tiny
(small) fragments constituting th@d, B)-path, for which|r; (n)|n:>ooo, WhereaSr{(q) is

representative of its giant (large) pieces, for whieh(n)| — +oco. Considering their
Legendre transforméf; («), fi(a)) with

@) = inf (o, @) — 7, (@)
qeC
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we have:

o fi(x) > 0 with o := (01 > 0, @2 > 0) defined on the induced (unboundedplter
range;

° fll(oz) < 0 with o := (01 < 0,2 < 0) defined on the induced (unboundeddlter
range.

We now come to the interpretation of these functigyi$(c), fl’(a)). Remember that
NY(e; y*) = #{S1(a; y*)} is the number of atoms whose firsbider exponent isx and
for which |r;(n)| ~ N,,_”*. Two cases may now arise depending on the type of fragments
of interest (tiny or giant, respectively).

e y* >0, sothatlr;(n)] — O: let an"(a; y*) denote the cardinal of the s&f(«; y*)

when y* is forced to be positive. Following the above analysis, there exists a unique
yi (@) > 0, such that, i (@) := N, * @ then

nILmoo |091/,."v(0,) an's(oﬁ )/S*(Ol)) = fi(@) =0

extending (5.11).
e y* < 0, so that|r;(n)] — +oo: if N} (a;y*) denotes the cardinal of the set
n—00

S1(a; y*) wheny* is forced to be negative, there exists a unigyféx) < O, such that, if
rl(a) = N, " (a), then

lim 10g; 16 Ny (o5 /" (@) = fi(a) <0

n—o00

which is the version of (5.11) for the very large pieces constituting(theB)-path.

Example. Letd = 0, m = 2, m;+ = mp4+ = 1/2 andryy = « (the golden number
1+ +/5)/2), ro = —1/a.
Dropping the information on sigfy, = 0), we get

21(q1: ¢5) = ()" (@ +a7%),
The unique minimuny;(¢1) is defined bya? @ = ¢4 (9,:z; = 0), and hence
q%(q1) = 0 andz1(q1; g7 (q1) = 0) := (3)”* has to be compared to 1. 4f < 1 there is

no solution to the degree-two equatien(qi; ¢;) = 1, if g1 = 1 there is one solution to
z1 = 1, while ¢; > 1 yields the two solutions

g; = —ti(q) = log, (2"~ + 22D 1)
q; ==~} (q0) = log, (21"t — /22D 1),

The Legendre transfornf; («1) of tj(q1) is positive with support [log2, +oc0). It is
increasing and diverges at = oo. Concerning the Legendre transforff(as) of i (g1), it
is negative with suppolt—oo, —log, 2]. This function decreases and divergeaat —oco.

5.3. Statistics of théA, B)-path graph

5.3.1. Spacetime partition functionln the above construction, we were interested in the
statistics of anA, B)-path trail, when the abscissa is parametrized by the ordinate. Adding
one dimension to this problem amounts to developing this trail in time. So doing, we gain
some insight into th€A, B)-path graph; some walker is now assumed to take a unit time
to reachB, starting fromA. An (A, B)-path graph is thus and’, B)-path trail where

A’ = (0,0,0), B := (1,1, 1) with the first two components relative to space (abscissa
and ordinate if the dimension of the underlying Euclidean spade&s?2) and the third
component relative to (non-decreasing) time.
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For (q = (q1,92), ¢* = (g}, ¢3), p) € R¥*1, define the extended spacetime lexel-
partition function

A
Zy(q, 4", p) =Y _ Imi(m)| " e 2|y ()9 @D (n)? Z,(0,0,0) = N,
i=1

where(|z; (n)|, b(; (n)); |ri ()|, b(r;(n)); t;(n))i=1,....n, iS the vector of increments attached
to each of thev, available(A, B)-path graph pieces at resolutian

We assume, with little loss of generality thatz) = N,-1: the fraction of time spent by
the walker on chunk € [N, ] is identical for any chunk. A model for which th@, 1)-valued
fraction of time (say(#, —)i=1....as (t1+)i=d+1....m) SPENt DY the walker depends on the type of
chunk under consideration is easy to imagine and to handle: the walker would trigger a clock
specific to each type of chunk he experiences. It is, therefore, assumed in the following
thats, _ = 4,4 =m~! which is consistent witty ", _; 6 +> 41 .0+ =1

Now Z,(q, q*, p) is defined recursively by

Zu1(q.q", p) =z2-(q.q", p) + Z,(q, 9", p)z2+(q, 9", p), Zo(q.q",p) =1 (5.13)
with
d

: —q2bi (- f e @b
z-(g.q", p) = Z |7z, |7 @ 9P |y (a1 @b, )tz].l
=1

and
m
. — f o @3h P
z4(q, q’, p) = Z |7qu+|611 g4 ’(m'+)|}’1,+|ql e % z(rz.+)tl,+'
I=d+1
Heres, =t , = m™%, under our hypothesis.

Define the generating function
Z(s,q.q", p) ==Y _b"Z,(q. 4", p).
n=0
It follows from (5.13) that
1-b'(1-2z-(q,9", p))
QA-b)A-b'z4(q, g% p))
provideds < F(q, q*, p) := min(0, F(q, g%, p)), with

Z(s,q,q9", p) = (5.14)

Fi(q.q", p) = —log,z.(q.q", p)
the functionz is undefined otherwise.

5.3.2. The equation of the spacetime critical domai@ne wishes here to study the
asymptotic behaviour of théA, B)-path pieces borrowed by the walker which reduces
to the understanding of the sB{«; «*) defined in subsection 5.3.4.

The functionF, : R® — R is concave and analytic, satisfyirfg, (0, 0,0) = —1, and
F,(0,0,log,, b) = 0. The functionF is also concave but only continuous, and we have a
phase transitionwhile crossing the critical domain:

{(q.q", p) € R®: Fi(q,q", p) = O}.
It is now a consequence of (5.14) that

lim —logy, Z.(q. 4", p) = F(q. 4", p). (5.15)
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Now define the function (q, g*) implicitly by

Fi(q,q", —(q,q") =0.
In developed form

m

(g @ —T(q. q)) = Y |m | e )|y (4 g E@) g (5.16)
I=d+1

It has (under our simplifying assumptions. = 1. = m~1) the explicit expression
T(qv q*) = - Iogm Z+(q9 q*)
with z, (q, ¢*) := z.(q, g*, 0).
The functiont : R* — R is concave and analytic. Alg, g*) = (o, 0), it takes the
valuez(o,0) = —log, b > —1.

5.3.3. The Legendre transformDefine next its Legendre transforifi«, a*) by
fla,o®) == inf (o, q) + («*, ¢") — T(q, g")). (5.17)
(q.9")€R?

Its dual system of Legendre variables:= (o1, a2) and o* = (o, «3) is defined
on its (bounded) Hlder range which is the polygonal convex hull, sHy of the points
(—log,, |71+, b(m,+)/logm, —10g,, |ri +|, b(ri,4)/10gm)i—a+1,...m-

We shall call this function the Legendre spectrum of the self-siniarB)-path graph:
it is non-negative, concave and analytic on its definition domain. The fungtiatiains its
maximum at(ao, «f) Which is the centre of gravity of the extremal pointsif Moreover,
flao, ) = —7(0,0) < 1, expressing the fact that macroscopic fragments are present
within such(A, B)-paths.

5.3.4. The thermodynamical interpretationWe now come to the interpretation of this
function.
Define the setB(«; a*) by

. . —log|mi(n)] b(mi(n)) . —log|ri(n)] « bri(n)) .
1 E[Nn]. W—)al,l— 2; — 0, |OgN — 0y

— O
og N, log N,
and let N, (a; o) = #B(a; a*) be the cardinal of this set. It is the number of atoms
in the (A, B)-path graph whose &lder exponent ig«, «*). Note that the quantity logy,
normalizing the spatial information in the above Seis nothing but— logz; (n), under our
hypothesis that;(n) = N 1.
Large deviation theory tells us that

lim logy N.(a;a®) = f(a, a®). (5.18)

In this context, the functiorf («, «*) is also of some importance, since it coincides
with the Hausdorff spectrum of the singular part of the self-simil&y B)-path graph just
constructed; in other wordsf (¢, «*) = fu(a, a*) is the Hausdorff dimension of the set
B(o; o®).

(The proof of this assertion can also be derived while readily adapting [10, theorem 16,
p 13], transferring results from the code space to the embedding geometrical space.)

Remark 9. Of course, it is still possible to focus on the regular part of ¢Ae B)-path
graph. This analysis would follow that explained in section 4.2: indeed, observe that for
(q. q*, p) € D¢, with

D®:={(q.q", p) €R°: Fy(q,q", p) > O}
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we have the limit result for the partition function

n—oo

lim —logZ,(q.q", p) = —log <sﬂ{g_(1— b)Z(s,q.q", p)> = Fw(q, 9", p)-
Here,

N z-(q,q", p)
Fx(q,q", p)i=—log ————————.
1_ Z+(q1 q, p)

Definet.(q, q*) by
Feo(q, 9%, —To(q, %)) = 0.
We have explicitly

Too(q. @) = —l09,,(z—(q. ¢*) + z4(q, ¢)).
We shall then callfs (o, a*), with
foola, o) :=inf  ((a, @) + (2", ¢%) — Too(q, 7))
(q.9")eR*

the Holder spectrum of the regular part of the, B)-path graph.

5.3.5. Concentrating on the length of the&, B)-path trail. This geometrical information

is quite important: suppose one is, for example, interested itetigth of the (A, B)-path
trail, in the confinedcase. Then, one should focus only on the moduli of the available
chunks, dropping the information on the signs.

Let then f (a1, o) be the Legendre transform ofg1, ¢;) = — 109, 24+ (g1, ¢7) with
2:(q1. ) = Y |l |4 (5.19)
I=d+1

settingg, = ¢3 = 0 into z(q, g%).

In the confined case, the Legendre varialites «7) vary in the polygonal convex hull
of the points(—log,, |7; +|, —100,, |71,+1)i=d+1.....» @nd are thus positive.

Define the set

.....

B(ay, o)) = {i e [N,]: =7 ITC?;Z;:”)' = ap —— ||(:)§;|;'\,~]:n)| — af}
and let N,(a1, af) = #B(a1, o) tle its cardinal. For the atoms withiB (a1, a3):
|7 ()] o N and |r;(n)] fins N, “*. Therefore, the modulus

1X: ()12 1= (1 (n)? + ri ()2
of these atoms grows likeX; (n)[l2 ~ N, ™MD and there areV, (a1, af) ~_ N e

such atoms.
Consider now the moduli partition function, for any real number

Nn
M, (8) =Y (mi(n)* + r:(m)»)*/2.
i=1
Observe that, := M, (1) is the length of thg A, B)-path trail, at resolutiom.
The contribution toM,, (8) of the atoms ofB(«1, @}) grows like

* —smi ¥
M, (8. af) ~ NN

o0
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—8 min(a,ay)

It is the product of their numbers; “**? by their ‘modulué’ N,
Letting o1 := e} and f, (@) = f(ae], «f), we also have

MG, a,a}) ~ o) —o min(aed.ap) (5.20)

(a})—Saay

If o < 1, this reduces td/, (8, o, oj) ~ N,f“ . The maximal contribution to
n—00

M, (5) is attained atr , = aj ,(6, o) defined by f, (o] ,) = da. At pointse] = of,, the

quantity f, («}) — daej is strictly positive or negative. This quantity vanishes at the unique

pointai, = of () defined byf;(af ) = I(@), with I(«) the Legendre transform of the

function 77 (¢1) defined as usual by

m

el 7@ =1
I=d+1

This defines a uniqué := §(«) by aé(a) = ().
Ifo>1, My, 0, 0) ~ NPV The uniques(a) under interest is now defined
n—0oQ
by §(a) = l(@).
Putting all this together, we get
8(a) = l(a)/ min(e, 1) (5.21)
and
My () := M,(8(er), o, af o(@)) ~ 1.
’ n—o00
We shall calls(x) the geometricake-dimension of the(A, B)-path trail. It is the
geometrical multifractal spectrum associated to the set of atoms
—log|7m; (n)|
—log |r;(n)]
The contribution toM,, () of M, («) is maximal and one. It is neither zero nor infinity
and the seB(aaj (@), o ,(a)) carries all the informationmodulu$’.
The contribution to the total length, := M,(1) of the atoms within set
B(aaj o(a), af ,(@)) is
() := My (1, , o7 o(ex)).
It follows from the above results that
li(e) ~ Ni©@ (5.22)
n—oo

B(aag o(a), af o(@)) = {i € [N,]: — a, —logy |ri(n)| — aio(a)} .

with ¢ (o) = min(e, Doj o(a)(8(er) — 1). For thosex for which thea-dimensions(«) > 1,
I, () diverges, as conventional wisdom suggests.

Remark 10.A similar study is possible on the-partition function defined by
N,
$,(0) = Z(eZb(m(n)) + e2h(r[(”)))9/2
i=1
which focuses on the number of occurrences of negative elementary reduction factors

(b(ﬂi(ﬂ)) = Zb(ﬂl,-(i)), b(ri(n)) = b(rl,-(i)))
=1 =1

in the unique multiplicative decomposition of each of the increments

(ﬂi(n) = l_[ﬂlj(i), ri(n) == l_[rlj(i))
j=1

j=1
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6. Concluding remarks

This work is an attempt towards generalizing the usual construction and analysis of
multifractal measures in two directions. The first consists in considering mixtures of
absolutely continuous and purely singular measures through an iterating function system
(IFS) with ‘sterile’ parts. Measures with atoms or gaps are easily introduced as limiting
situations in this framework. We have proceeded with the thermodynamical study of these
sterile parts in the IFS, using a Gibbs formalism.

Then, we have bridged the gap between measures towards functions and more generally
towards ‘bridges’, while allowing the ‘reduction factors’ attributed to the maps of the IFS
to be negative. It should be noted that the relation to [29, 30] is through the special case
where the reduction factors in one dimension of space are positive numbers, whereas those
in other dimensions of space are allowed to be real numbers, but summing up to one.
Then, a bridge is the graph of a self-similar function or, in other words, the graph of the
distribution function of a one-dimensional vector-valued self-similar measure. As in [30],
this work generalizes thus self-affine functions [29] but in a different direction than [30]:
not to measures in higher-dimensional spaces but to more geiera)-bridges or paths.
Consequently, the approach developed in this work is different in the sense that it focuses
on the properties of the object as a subset of the plane, and not as a real-valued measure
on the line.

For such paths, the main lines of the multifractal formalism have been derived. These
paths are allowed to be constituted with both macroscopic and microscopic fragments, each
deserving its specific statistics, while remaining continuous, exploiting the ideas developed
in the first part of the work on measures. Discontinuous paths may also be considered with
some information related to the statistics of their jumps.
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